scholarly journals Effects of Single Local Injection of Local Anesthetic Agents on Intervertebral Disc Degeneration: Ex Vivo and Long-Term in Vivo Experimental Study

2015 ◽  
Vol 5 (1_suppl) ◽  
pp. s-0035-1554227-s-0035-1554227
Author(s):  
Koji Iwasaki ◽  
Hideki Sudo ◽  
Katsuhisa Yamada ◽  
Norimasa Iwasaki
PLoS ONE ◽  
2014 ◽  
Vol 9 (10) ◽  
pp. e109851 ◽  
Author(s):  
Koji Iwasaki ◽  
Hideki Sudo ◽  
Katsuhisa Yamada ◽  
Hideaki Higashi ◽  
Takashi Ohnishi ◽  
...  

2016 ◽  
Vol 6 (1_suppl) ◽  
pp. s-0036-1582615-s-0036-1582615
Author(s):  
Debora Colangelo ◽  
Paul Robbins ◽  
Luigi Aurelio Nasto ◽  
Laura Niedernhofer ◽  
Enrico Pola

Bioengineered ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 4320-4330
Author(s):  
Ming Lei ◽  
Kangcheng Zhao ◽  
Wenbin Hua ◽  
Kun Wang ◽  
Shuai Li ◽  
...  

2020 ◽  
Author(s):  
JR Ferreira ◽  
GQ Teixeira ◽  
E Neto ◽  
C Ribeiro-Machado ◽  
AM Silva ◽  
...  

Abstract The authors have withdrawn this preprint due to author disagreement.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Shufen Liu ◽  
Yuhao Cheng ◽  
Yuqi Tan ◽  
Jingcheng Dong ◽  
Qin Bian

Objectives. Aberrant transforming growth factor β (TGFβ) activation is detrimental to both nucleus pulposus (NP) cells and cartilage endplates (CEPs), which can lead to intervertebral disc degeneration (IDD). Ligustrazine (LIG) reduces the expression of inflammatory factors and TGFβ1 in hypertrophic CEP to prevent IDD. In this study, we investigate the effects of LIG on NP cells and the TGFβ signaling. Design. LIG was injected to the lumbar spinal instability (LSI) mouse model. The effect of LIG was evaluated by intervertebral disc (IVD) score in the LSI mouse model. The expression of activated TGFβ was examined using immunostaining with pSmad2/3 antibody. The upright posture (UP) rat model was also treated and evaluated in the same manner to assess the effect of LIG. In ex vivo study, IVDs from four-week old mice were isolated and treated with 10−5, 10−6, and 10−7 M of LIG. We used western blot to detect activated TGFβ expression. TGFβ-treated human nucleus pulposus cells (HNPCs) were cotreated with optimized dose of LIG in vitro. Immunofluorescence staining was performed to determine pSmad2/3, connective tissue growth factor (CCN2), and aggrecan (ACAN) expression levels. Results. IVD score and the percentage of pSmad2/3+ NP cells were low in LIG-treated LSI mice in comparison with LSI mice, but close to the levels in the Sham group. Similarly, LIG reduced the overexpression of TGFβ1 in NP cells. The inhibitory effect of LIG was dose dependent. A dose of 10−5 M LIG not only strongly attenuated Smad2/3 phosphorylation in TGFβ-treated IVD ex vivo but also suppressed pSmad2/3, CCN2, and ACAN expression in TGFβ-treated NP cells in vitro. Conclusions. LIG prevents IDD via suppression of TGFβ overactivation in NP cells.


Author(s):  
Nadeen Chahine ◽  
Nate Stetson ◽  
Neena Rajan ◽  
Daniel Grande ◽  
Mitchell Levine

Enzymatic degradation of the intervertebral disc (IVD) with chondroitinase ABC (ChABC) reduces proteoglycan content of the IVD, thus simulating the GAG loss seen clinically in patients suffering from disc degeneration. This approach has been employed in models of disc injury in rats, rabbits and goats when administered over a large range of dosages [1–3]. Moreover, ChABC has also been used to induce repair of herniated discs in rabbits via chemonucleolysis [4, 5]. Despite the effectiveness of ChABC treatment to reduce the GAG content of the IVD, several recent studies including our own, have shown that this GAG loss is reversible at extended time points post enzymatic treatment [2,6,7]. The goal of the current study is to examine the dose dependent response of IVDs to degradation by ChABC in vivo. We hypothesize that administration of ChABC will result in dose dependent GAG loss and reduced mechanical properties. We administered ChABC at 0.1 U/ml, 1.0 U/ml and 10 U/ml and examined the changes in biomechanical properties, biochemical content, and gene expression in order to examine the biophysical and molecular mechanism by which GAG loss occurs in this model.


2021 ◽  
Vol 398 (1) ◽  
pp. 112359
Author(s):  
Zhuochao Liu ◽  
Qi Zhou ◽  
Jiancheng Zheng ◽  
Changwei Li ◽  
Weibin Zhang ◽  
...  

Author(s):  
Dong Wang ◽  
Xin He ◽  
Di Wang ◽  
Pandi Peng ◽  
Xiaolong Xu ◽  
...  

Intervertebral disc degeneration (IDD) has been generally accepted as the major cause of low back pain (LBP), which causes an enormous socioeconomic burden. Previous studies demonstrated that the apoptosis of nucleus pulposus (NP) cells and the dyshomeostasis of extracellular matrix (ECM) contributed to the pathogenesis of IDD, and effective therapies were still lacking. Quercetin, a natural flavonoid possessing a specific effect of autophagy stimulation and SIRT1 activation, showed some protective effect on a series of degenerative diseases. Based on previous studies, we hypothesized that quercetin might have therapeutic effects on IDD by inhibiting the apoptosis of NP cells and dyshomeostasis of ECM via the SIRT1-autophagy pathway. In this study, we revealed that quercetin treatment inhibited the apoptosis of NP cells and ECM degeneration induced by oxidative stress. We also found that quercetin promoted the expression of SIRT1 and autophagy in NP cells in a dose-dependent manner. Autophagy inhibitor 3-methyladenine (3-MA) reversed the protective effect of quercetin on apoptosis and ECM degeneration. Moreover, SIRT1 enzymatic activity inhibitor EX-527, suppressed quercetin-induced autophagy and the protective effect on NP cells, indicating that quercetin protected NP cells against apoptosis and prevented ECM degeneration via SIRT1-autophagy pathway. In vivo, quercetin was also demonstrated to alleviate the progression of IDD in rats. Taken together, our results suggest that quercetin prevents IDD by promoting SIRT1-dependent autophagy, indicating one novel and effective therapeutic method for IDD.


PLoS ONE ◽  
2019 ◽  
Vol 14 (10) ◽  
pp. e0223435 ◽  
Author(s):  
Alon Lai ◽  
Lap Ho ◽  
Thomas W. Evashwick-Rogler ◽  
Hironobu Watanabe ◽  
Jonathan Salandra ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document