Never-ending cranberry story: In vivo, ex vivo and in vitro studies indicate that tannin-depleted extracts from Vaccinum macrocarpon inhibit bacterial adhesion of uropathogenic E. coli by blocking FimH adhesin

Planta Medica ◽  
2015 ◽  
Vol 81 (16) ◽  
Author(s):  
A Hensel ◽  
N Rafsanjany
2001 ◽  
Vol 281 (5) ◽  
pp. G1140-G1150 ◽  
Author(s):  
Lynn Edde ◽  
Ronaldo B. Hipolito ◽  
Freda F. Y. Hwang ◽  
Denis R. Headon ◽  
Robert A. Shalwitz ◽  
...  

Lactoferrin is a milk protein that reportedly protects infants from gut-related, systemic infection. Proof for this concept is limited and was addressed during in vivo and in vitro studies. Neonatal rats pretreated orally with recombinant human lactoferrin (rh-LF) had less bacteremia and lower disease severity scores ( P < 0.001) after intestinal infection with Escherichia coli. Control animals had 1,000-fold more colony-forming units of E. coli per milliliter of blood than treated animals ( P < 0.001). Liver cultures from control animals had a twofold increase in bacterial counts compared with cultures from rh-LF-treated pups ( P < 0.02). Oral therapy with rh-LF + FeSO4did not alter the protective effect. In vitro studies confirmed that rh-LF interacted with the infecting bacterium and rat macrophages. An in vitro assay showed that rh-LF did not kill E. coli, but a combination of rh-LF + lysozyme was microbicidal. In vitro studies showed that rat macrophages released escalating amounts of nitric oxide and tumor necrosis factor-α when stimulated with increasing concentrations of rh-LF. The in vitro studies suggest that rh-LF may act with other “natural peptide antibiotics” or may prime macrophages to kill E. coli in vivo.


2018 ◽  
Vol 5 (suppl_1) ◽  
pp. S429-S429 ◽  
Author(s):  
Denis Daigle ◽  
Salvador Vernacchio ◽  
Luigi Xerri ◽  
Daniel Pevear

Abstract Background VNRX-5133 is a cyclic boronate β-lactamase inhibitor (BLI) in clinical development with cefepime for treatment of infections caused by ESBL- and carbapenemase producing Enterobacteriaceae and P. aeruginosa. It is a new generation broad-spectrum BLI with direct inhibitory activity against serine-active site and emerging metallo-β-lactamases (e.g., VIM/NDM). In previous in vivo and in vitro studies, the PK-PD driver of efficacy of VNRX-5133 was defined as AUC:MIC. Described herein are in vitro studies to assess the magnitude of VNRX-5133 exposure (AUC:MIC) required to restore efficacy of cefepime against a broad collection of KPC- and VIM/NDM-producing Enterobacteriaceae (ENT) and P. aeruginosa (PSA) clinical isolates. Methods Dose-fractionation studies, consisting of four VNRX-5133 exposures fractionated into regimens administered every 4, 8, 12 and 24 hours, were performed in an in vitro infection model with simulated 2 g q8h dosing of cefepime against NDM-1 producing E. coli. A Hill-type model described the relationship between change in log10 CFU at 24 hours and VNRX-5133 exposure (AUC:MIC), where cefepime MIC was determined with 4 µg/mL VNRX-5133. To evaluate variability of efficacy enabled by VNRX-5133 between isolates as well as between Serine-BL and Metallo-BL producers, dose-ranging studies were completed for eight isolates (seven ENT and one PSA) producing KPC or VIM/NDM metallo-β-lactamases. Results The PK-PD exposure parameter AUC:MIC accurately described the efficacy of VNRX-5133 in rescuing cefepime activity against KPC and VIM/NDM carbapenemase-producing isolates of ENT and PSA. The AUC:MIC ratios associated with net bacterial stasis, 1-, and 2-log10 reductions in bacterial burden from baseline were 6.1, 18.4 and 45, respectively, for a collection of five VIM/NDM- and three KPC-producing isolates with cefepime MICs ranging from 4–8 µg/mL with no significant differences observed between Ser-BL and MBL producers. Conclusion These data confirm the equivalent in vitro activity of cefepime/VNRX-5133 against organisms producing serine- and metallo-β-lactamases and provides an initial PK-PD target for VNRX-5133 efficacy when used in combination with cefepime for the treatment of ESBL- and carbapenemase-producing ENT and PSA infections. Disclosures D. Daigle, VenatoRx Pharmaceuticals Inc.: Employee and Shareholder, Salary. S. Vernacchio, VenatoRx Pharmaceuticals Inc.: Employee and Shareholder, Salary. L. Xerri, VenatoRx Pharmaceuticals Inc.: Employee and Shareholder, Salary. D. Pevear, VenatoRx Pharmaceuticals Inc.: Employee, Salary.


2000 ◽  
Vol 83 (05) ◽  
pp. 752-758 ◽  
Author(s):  
Claude Le Feuvre ◽  
Annie Brunet ◽  
Thuc Do Pham ◽  
Jean-Philippe Metzger ◽  
André Vacheron ◽  
...  

SummaryThe 3-morpholinosydnonimine (SIN-1) generates both nitric oxide (NO) and superoxide anion (O2−). It elicits dose-dependent vasodilation in vivo, in spite of the opposite effects of its breakdown products on vascular tone and platelet aggregation.This study was designed to investigate the influence of intravenous SIN-1 injection on platelet Ca2+ handling in patients undergoing coronary angiography. SIN-1 administration reduced cytosolic [Ca2+] in unstimulated platelets by decreasing Ca2+ influx. It attenuated Ca2+ mobilization from internal stores evoked by thrombin or thapsigargin. In vitro studies were used as an approach to investigate how simultaneous productions of NO and O2− from SIN-1 modify thrombin- or thapsigargin-induced platelet Ca2+ mobilization. Superoxide dismutase, the O2− scavenger, enhanced the capacity of SIN-1 to inhibit Ca2+ mobilization but catalase had no effect.This suggests that the effects of SIN-1 on platelet Ca2+ handling resemble those of NO, but are modulated by simultaneous O2− release, independently of H2O2 formation.


Peptides ◽  
2012 ◽  
Vol 37 (2) ◽  
pp. 320-326 ◽  
Author(s):  
Shiming Xu ◽  
Pei Han ◽  
Mei Huang ◽  
Joseph C. Wu ◽  
Chingpin Chang ◽  
...  

2020 ◽  
Author(s):  
Hans B. Smith ◽  
Tin Lok Li ◽  
Man Kit Liao ◽  
Grischa Y. Chen ◽  
Zhihong Guo ◽  
...  

ABSTRACTListeria monocytogenes is a Gram-positive intracellular pathogen that is highly adapted to invade and replicate in the cytosol of eukaryotic cells. Intermediate metabolites in the menaquinone biosynthesis pathway are essential for the cytosolic survival and virulence of L. monocytogenes, independent of the production of MK and aerobic respiration. Determining which specific intermediate metabolite(s) are essential for cytosolic survival and virulence has been hindered by the lack of an identified DHNA-CoA thioesterase essential for converting DHNA-CoA to DHNA in the MK synthesis pathway. Using the recently identified Escherichia coli DHNA-CoA thioesterase as a query, homology sequence analysis revealed a single homolog in L. monocytogenes, LMRG_02730. Genetic deletion of LMRG_02730 resulted in an ablated membrane potential, indicative of a non-functional electron transport chain (ETC) and an inability to aerobically respire. Biochemical kinetic analysis of LMRG_02730 revealed strong activity towards DHNA-CoA, similar to its E. coli homolog, further demonstrating that LMRG_02730 is a DHNA-CoA thioesterase. Functional analyses in vitro, ex vivo, and in vivo using mutants directly downstream and upstream of LMRG_02730 revealed that DHNA-CoA is sufficient to facilitate in vitro growth in minimal media, intracellular replication, and plaque formation in fibroblasts. In contrast, protection against bacteriolysis in the cytosol of macrophages and tissue specific virulence in vivo requires the production of DHNA. Taken together, these data implicate LMRG_02730 (renamed MenI) as a DHNA-CoA thioesterase and suggest that while DHNA protects the bacteria from killing in the macrophage cytosol, DHNA-CoA is necessary for intracellular bacterial replication.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Loïc Léger ◽  
Deborah Byrne ◽  
Paul Guiraud ◽  
Elsa Germain ◽  
Etienne Maisonneuve

Bacteria regulate their metabolism to adapt and survive adverse conditions, in particular to stressful downshifts in nutrient availability. These shifts trigger the so-called stringent response, coordinated by the signaling molecules guanosine tetra and pentaphosphate collectively referred to as (p)ppGpp. In Escherichia coli, accumulation of theses alarmones depends on the (p)ppGpp synthetase RelA and the bifunctional (p)ppGpp synthetase/hydrolase SpoT. A tight regulation of these intracellular activities is therefore crucial to rapidly adjust the (p)ppGpp levels in response to environmental stresses but also to avoid toxic consequences of (p)ppGpp over-accumulation. In this study, we show that the small protein NirD restrains RelA-dependent accumulation of (p)ppGpp and can inhibit the stringent response in E. coli. Mechanistically, our in vivo and in vitro studies reveal that NirD directly binds the catalytic domains of RelA to balance (p)ppGpp accumulation. Finally, we show that NirD can control RelA activity by directly inhibiting the rate of (p)ppGpp synthesis.


2008 ◽  
Vol 134 (4) ◽  
pp. A-705
Author(s):  
Peter Konturek ◽  
Kathrin Löffler ◽  
Gregor Burnat ◽  
Stanislaw Konturek ◽  
Eckhart G. Hahn ◽  
...  

2012 ◽  
Vol 82 (3) ◽  
pp. 228-232 ◽  
Author(s):  
Mauro Serafini ◽  
Giuseppa Morabito

Dietary polyphenols have been shown to scavenge free radicals, modulating cellular redox transcription factors in different in vitro and ex vivo models. Dietary intervention studies have shown that consumption of plant foods modulates plasma Non-Enzymatic Antioxidant Capacity (NEAC), a biomarker of the endogenous antioxidant network, in human subjects. However, the identification of the molecules responsible for this effect are yet to be obtained and evidences of an antioxidant in vivo action of polyphenols are conflicting. There is a clear discrepancy between polyphenols (PP) concentration in body fluids and the extent of increase of plasma NEAC. The low degree of absorption and the extensive metabolism of PP within the body have raised questions about their contribution to the endogenous antioxidant network. This work will discuss the role of polyphenols from galenic preparation, food extracts, and selected dietary sources as modulators of plasma NEAC in humans.


Sign in / Sign up

Export Citation Format

Share Document