Plant species reported from Swiss farmers to treat bovine respiratory diseases

Planta Medica ◽  
2015 ◽  
Vol 81 (16) ◽  
Author(s):  
H Ayrle ◽  
K Schmid ◽  
M Disler ◽  
T Bischoff ◽  
K Stucki ◽  
...  
2017 ◽  
Vol 86 (4) ◽  
pp. 325-332 ◽  
Author(s):  
Corinne Philippe-Reversat ◽  
David Homer ◽  
Claude Hamers ◽  
Sylvie Brunet ◽  
Milan Huňady

This study demonstrated the duration of immunity over 6 months of a vaccine against key bovine respiratory disease pathogens: Parainfluenza 3, Bovine Respiratory Syncytial Virus, Bovine Viral Diarrhoea and Mannheimia haemolytica. This was performed by challenge on colostrum-deprived calves at the age of 2 weeks. Recent European field isolates were used as challenge strains. Clinical signs and pathogen excretion or presence were monitored. Field relevance of the viral challenge strains was analysed using phylogenic analysis. Significant reduction of excretion of the 3 viruses in vaccinated animals was a consistent finding, demonstrating the efficacy of the vaccine. Reducing shedding is indeed key to interrupting the infection transmission chain and helping to achieve the protective effects of immunisation that extend beyond the individual. A significant reduction of clinical signs and lung lesions following the Mannheimia haemolytica challenge was also observed in vaccinated animals versus controls. Comparison of the challenge strains to an array of global and European strains, including recent ones, demonstrated a high genetic proximity, supporting the potential for the vaccine to maintain similar levels of efficacy in the field over a 6-month period post vaccination.


Author(s):  
Chandrasekar Vuppalapati ◽  
Rajasekar Vuppalapati ◽  
Sharat Kedari ◽  
Anitha Ilapakurti ◽  
Archana Ramalingam ◽  
...  

2019 ◽  
Vol 6 (2) ◽  
pp. 56 ◽  
Author(s):  
Harun Albayrak ◽  
Zafer Yazici ◽  
Emre Ozan ◽  
Cuneyt Tamer ◽  
Ahmed Abd El Wahed ◽  
...  

A respiratory disease outbreak on a cattle farm in northern Turkey produced respiratory tract symptoms and severe pneumonia symptoms in 20 calves. Eight calves died, and a lung specimen from one carcass was analysed for bacteria and for viruses of the Bovine respiratory diseases complex. Bacteriological analysis was negative, but antigen detection ELISA and RT-PCR results indicated the presence of Bovine parainfluenza virus (BPIV). Virus isolation succeeded on Madin-Darby Bovine Kidney cells, and subsequent whole genome sequencing and phylogenetic analysis identified BPIV-3c. This is the first report of BPIV-3c isolation from cattle in Turkey, indicating the need for more virological and epidemiological studies.


2017 ◽  
Vol 47 (8) ◽  
Author(s):  
Layane Queiroz Magalhães ◽  
Anderson Lopes Baptista ◽  
Pedro de Almeida Fonseca ◽  
Guilherme Lobato Menezes ◽  
Geison Morel Nogueira ◽  
...  

ABSTRACT: Bovine respiratory diseases (BRD) affect production rates negatively because it compromise health and well-being of the affected animal. The hypothesis of this study was that the use of metaphylactic protocols based on the risk to develop BRD would reduce morbidity and pulmonary lesions. For this purpose, the aims of this study were to evaluate the effect of two metaphylactic protocols on the morbidity of feedlot cattle with a known sanitary history, occurrence of pulmonary lesions at slaughter, and the possible participation of Mannheimia haemolytica, Histophilus somni, Bovine alphaherpesvirus 1 (BoHV-1) and bovine respiratory syncytial virus (BRSV) in the development of BRD. An experimental study was designed in which 3,094 adult, male, cattle, were grouped according to the risk to develop BRD: a) group without metaphylaxis (n=2,104), low-risk animals; b) metaphylaxis group with oxytetracycline (n=789), moderate-risk animals; c) metaphylaxis group with tildipirosin (n=201), high-risk animals. All cattle were immunized against pathogens associated with BRD (BoHV-1, BVDV, BRSV, PI3). The morbidity for BRD was 8.2% (253/3,094); cattle within the moderate-risk group for BRD had the lowest frequency (6.1%), followed by high-risk animals with tildipirosin metaphylaxis (6.5%) and low-risk without metaphylaxis (9.1%) (P=0.019). At the abattoir, 1.2% of lungs with lesions were found. There was a difference (P=0.036) in the frequency of pulmonary lesions between healthy animals (1.1%) and those diagnosed with BRD (2.8%). Two agents associated with BRD were identified by PCR assays in the lungs (n=37) of cattle: M. haemolytica (16.2%) and H. somni (5.4%). In addition, concomitant infections involving these pathogens were identified in the lungs of two steers. These results demonstrate that the use of metaphylactic protocols, based on the risk to develop BRD, reduces morbidity and pulmonary lesions in affected cattle. Furthermore, pulmonary lesions were more frequent in animals with a history of BRD.


2017 ◽  
Vol 5 (39) ◽  
Author(s):  
Eiji Hata ◽  
Kazuya Nagai ◽  
Kenji Murakami

ABSTRACT Mycoplasma bovirhinis, a mycoplasmal species involved in bovine respiratory diseases, is also a commensal microorganism that inhabits the bovine respiratory and reproductive organs. We present the complete 948,039-bp genome sequence of M. bovirhinis strain HAZ141_2, which was isolated from bovine nasal discharge in Japan.


Animals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 295 ◽  
Author(s):  
Hee-su Shin ◽  
Miok Kim ◽  
Kwang Soo Kim ◽  
Yong Ki Min ◽  
Chang Hoon Lee

The industrial livestock environment can cause stress and weakened immunity in cattle, leading to microbial infections which reduce productivity. As such, there is a need for an effective therapeutic agent that can alleviate uncontrolled destructive respiratory inflammation. We found that lysophosphatidic acid (LPA), a potent endogenous stress-induced inflammatory agent, causes respiratory tissue damage and triggers inflammation in bovine bronchial cells. LPA also inflames pulmonary bovine blood vessel cells to produce inflammatory cytokines. These findings strongly suggest that LPA is a highly important endogenous material exacerbating bovine respiratory diseases. We further identified a novel LPA-signaling antagonist, KA-1002, and showed that it alleviated LPA-mediated bovine tracheal cell disruption and inflammation. Therefore, KA-1002 could potentially serve as a novel therapeutic agent to maintain physiologically healthy and balanced conditions in bovine respiratory tracts.


Sign in / Sign up

Export Citation Format

Share Document