scholarly journals Characterisation of the First Bovine Parainfluenza Virus 3 Isolate Detected in Cattle in Turkey

2019 ◽  
Vol 6 (2) ◽  
pp. 56 ◽  
Author(s):  
Harun Albayrak ◽  
Zafer Yazici ◽  
Emre Ozan ◽  
Cuneyt Tamer ◽  
Ahmed Abd El Wahed ◽  
...  

A respiratory disease outbreak on a cattle farm in northern Turkey produced respiratory tract symptoms and severe pneumonia symptoms in 20 calves. Eight calves died, and a lung specimen from one carcass was analysed for bacteria and for viruses of the Bovine respiratory diseases complex. Bacteriological analysis was negative, but antigen detection ELISA and RT-PCR results indicated the presence of Bovine parainfluenza virus (BPIV). Virus isolation succeeded on Madin-Darby Bovine Kidney cells, and subsequent whole genome sequencing and phylogenetic analysis identified BPIV-3c. This is the first report of BPIV-3c isolation from cattle in Turkey, indicating the need for more virological and epidemiological studies.

2013 ◽  
Vol 57 (4) ◽  
pp. 479-483 ◽  
Author(s):  
Wojciech Socha ◽  
Jerzy Rola ◽  
Dariusz Bednarek ◽  
Renata Urban-Chmiel ◽  
Jan F. Żmudziński

Abstract Shedding time of bovine respiratory syncytial virus (BRSV) and bovine parainfluenza virus 3 (BPIV3) in calves vaccinated intranasally with modified live Rispoval RS-PI3 vaccine was determined. Blood and nasal swabs were collected on selected days before and after vaccination. Antibodies against BRSV and BPIV3 were tested by Respiratory ELISA Pentakit and the viral RNA was detected by RT-PCR. Twenty eight days after administration of the vaccine, a marked increase of specific antibody titres to BRSV and BPIV3 was detected in vaccinated calves. All animals were RT-PCR positive both for BRSV and BPIV3. Both viruses were excreted with nasal discharges within 8 d after vaccination but the course of shedding in individual calves was variable.


2018 ◽  
Vol 56 (2) ◽  
pp. 277-281 ◽  
Author(s):  
Melissa Macías-Rioseco ◽  
Santiago Mirazo ◽  
Francisco A. Uzal ◽  
Martín Fraga ◽  
Caroline Silveira ◽  
...  

Bovine parainfluenza virus-3 (BPIV-3) is a recognized respiratory pathogen of cattle, and it has also been identified in aborted fetuses. However, little is known of this agent as a reproductive pathogen and detailed descriptions of fetal pathology on natural cases are lacking in the scientific literature. This article describes and illustrates lesions in a fetus spontaneously aborted by a first-calving Holstein heifer, naturally infected with BPIV-3 genotype A, broadening the current knowledge on fetal pathology by this virus. Fetal autopsy revealed diffusely reddened, rubbery and unexpanded lungs. Histologically, there was necrotizing bronchiolitis/alveolitis with intraluminal fibrin exudate and syncytial cells in the bronchiolar/alveolar spaces, and non-suppurative peribronchiolitis and perivascular interstitial pneumonia. In the small intestine there was multifocal necrotizing cryptitis and occasional necrotic syncytial enterocytes. Intralesional and extralesional BPIV-3 antigen was detected by immunohistochemistry in the lung and small intestine, and BPIV-3a was identified in fetal tissues by RT-PCR and sequencing.


2018 ◽  
Vol 36 (3) ◽  
pp. 215 ◽  
Author(s):  
Rodrigo de Almeida Vaucher ◽  
Amauri Braga Simonetti ◽  
Paulo Michel Roehe

2019 ◽  
Vol 63 (2) ◽  
pp. 167-173 ◽  
Author(s):  
Mehmet Ozkan Timurkan ◽  
Hakan Aydin ◽  
Ahmet Sait

AbstractIntroduction:Bovine parainfluenza virus-3 (BPIV3) and bovine respiratory syncytial virus (BRSV) are the cause of respiratory disease in cattle worldwide. With other pathogens, they cause bovine respiratory disease complex (BRDC) in ruminants. The aim of the study was the detection and molecular characterisation of BPIV3 and BRSV from nasal swabs and lung samples of cows in and around the Erzurum region of eastern Turkey.Material and Methods:In total, 155 samples were collected. Of animals used in the study 92 were males and 63 females. The age of the animals was between 9 months and 5 years, mean 1.4 years. Most males were in the fattening period and being raised in open sheds; females were in the lactating period and kept in free stall barns. All samples were tested for the presence of viral genes using RT-PCR. Gene-specific primers in a molecular method (RT-PCR) identified BRSV (fusion gene) and BPIV3 (matrix gene) strains at the genus level.Results:RNA from BRSV and BPIV3 was detected in two (1.29%) and three (1.93%) samples, respectively, one of each of which was sequenced and the sequences were aligned with reference virus strains. Phylogenetic analyses clustered the strains in genotype C/BPIV3 and subgroup III/BRSV.Conclusion:The results indicate that BRSV and BPIV3 contribute to bovine respiratory disease cases in Turkey. This is the first report on their detection and molecular characterisation in ruminants in Turkey.


2016 ◽  
Vol 66 (4) ◽  
pp. 509-519
Author(s):  
Ljubiša Veljović ◽  
Aleksandra Knežević ◽  
Nenad Milić ◽  
Dejan Krnjaić ◽  
Radoš Miković ◽  
...  

AbstractThe presence of bovine parainfluenza virus type 3 (BPIV3) was examined in 119 nasal swabs collected from cattle with severe respiratory infection. All samples were conducted for virus isolation on the MDBK cell line. The cytopathic effect was observed after 48h to 72h in cells inoculated with eight samples (8/119; 6.7%). The confirmation of isolated strains of BPIV3 was done by the virus-neutralization test. In addition, all samples of bovine nasal swabs were also examined for the presence of BPIV3 virus using RT-PCR with primers specific for the part of HN gene. The presence of BPIV3 was detected in eight samples (8/119; 6.7%) that were also positive upon virus isolation. The molecular characterization based on nucleotide sequencing of the part of the HN gene showed that all BPIV3 isolates belonged to genotype C of BPIV3. They branched in one distinct cluster with three different branches, but these branches were very similar to each other (98.1% to 99.8%). Serbian BPIV3c isolates were most similar to the Chinese BPIV3c isolates SD0805, SD0809 and SD0835 (from 97.92% to 99.7%), and to South Korean (12Q061), Japanese (HS9) and American (TVMDL16 and TVMDL20) BPIV3c strains (from 97.1% to 98.8%), and distinct from American (TVMDL15and TVMDL17) and Australian (Q5592) BPI3V genotype B strains (only 79.9% to 82.3% similarity), as well as from the genotype A BPIV3 strains from different countries published in GenBank.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Rahinatou N. Ghapoutsa ◽  
Maurice Boda ◽  
Rashi Gautam ◽  
Valantine Ngum Ndze ◽  
Akongnwi E. Mugyia ◽  
...  

Abstract Background Despite the global roll-out of rotavirus vaccines (RotaTeq/Rotarix / ROTAVAC/Rotasiil), mortality and morbidity due to group A rotavirus (RVA) remains high in sub-Saharan Africa, causing 104,000 deaths and 600,000 hospitalizations yearly. In Cameroon, Rotarix™ was introduced in March 2014, but, routine laboratory diagnosis of rotavirus infection is not yet a common practice, and vaccine effectiveness studies to determine the impact of vaccine introduction have not been done. Thus, studies examining RVA prevalence post vaccine introduction are needed. The study aim was to determine RVA prevalence in severe diarrhoea cases in Littoral region, Cameroon and investigate the role of other diarrheagenic pathogens in RVA-positive cases. Methods We carried out a study among hospitalized children < 5 years of age, presenting with acute gastroenteritis in selected hospitals of the Littoral region of Cameroon, from May 2015 to April 2016. Diarrheic stool samples and socio-demographic data including immunization and breastfeeding status were collected from these participating children. Samples were screened by ELISA (ProSpecT™ Rotavirus) for detection of RVA antigen and by gel-based RT-PCR for detection of the VP6 gene. Co-infection was assessed by multiplexed molecular detection of diarrheal pathogens using the Luminex xTAG GPP assay. Results The ELISA assay detected RVA antigen in 54.6% (71/130) of specimens, with 45, positive by VP6 RT-PCR and 54, positive using Luminex xTAG GPP. Luminex GPP was able to detect all 45 VP6 RT-PCR positive samples. Co-infections were found in 63.0% (34/54) of Luminex positive RVA infections, with Shigella (35.3%; 12/34) and ETEC (29.4%; 10/34) detected frequently. Of the 71 ELISA positive RVA cases, 57.8% (41/71) were fully vaccinated, receiving two doses of Rotarix. Conclusion This study provides insight on RVA prevalence in Cameroon, which could be useful for post-vaccine epidemiological studies, highlights higher than expected RVA prevalence in vaccinated children hospitalized for diarrhoea and provides the trend of RVA co-infection with other enteric pathogens. RVA genotyping is needed to determine circulating rotavirus genotypes in Cameroon, including those causing disease in vaccinated children.


Author(s):  
Vikash Kumar Gupta ◽  
Buthaina Mohammad Alkandari ◽  
Wasif Mohammed ◽  
Mohsen Ahmed Abdelmohsen ◽  
Mohammad Gaber Abdullah Mohammad

AbstractStudies available in the literature have shown alterations in blood coagulation tests in severe cases of COVID-19 pneumonia, with a significant risk of venous thromboembolism (VTE). Since microvascular thrombosis is a well-known fact in COVID-19 disease, requiring therapeutic anticoagulation, low-molecular weight heparin (LMWH) in prophylactic dose is a part of the clinical management of hospitalized COVID-19 patients. In this scenario, we describe three cases of abdominal spontaneous retroperitoneal hematoma (SRH) in hospitalized reverse transcriptase-polymerase chain reaction (RT-PCR)-confirmed COVID-19 patients.


Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1358
Author(s):  
Brigitte Sigrist ◽  
Jessica Geers ◽  
Sarah Albini ◽  
Dennis Rubbenstroth ◽  
Nina Wolfrum

Avian bornaviruses were first described in 2008 as the causative agents of proventricular dilatation disease (PDD) in parrots and their relatives (Psittaciformes). To date, 15 genetically highly diverse avian bornaviruses covering at least five viral species have been discovered in different bird orders. Currently, the primary diagnostic tool is the detection of viral RNA by conventional or real-time RT-PCR (rRT-PCR). One of the drawbacks of this is the usage of either specific assays, allowing the detection of one particular virus, or of assays with a broad detection spectrum, which, however, do not allow for the simultaneous specification of the detected virus. To facilitate the simultaneous detection and specification of avian bornaviruses, a multiplex real-time RT-PCR assay was developed. Whole-genome sequences of various bornaviruses were aligned. Primers were designed to recognize conserved regions within the overlapping X/P gene and probes were selected to detect virus species-specific regions within the target region. The optimization of the assay resulted in the sensitive and specific detection of bornaviruses of Psittaciformes, Passeriformes, and aquatic birds. Finally, the new rRT-PCR was successfully employed to detect avian bornaviruses in field samples from various avian species. This assay will serve as powerful tool in epidemiological studies and will improve avian bornavirus detection.


Sign in / Sign up

Export Citation Format

Share Document