Bilirubin Decreases Macrophage Cholesterol Efflux and ABCA1 Protein Expression

2017 ◽  
Author(s):  
D Wang ◽  
A Tosevska ◽  
E Heiß ◽  
A Ladurner ◽  
C Mölzer ◽  
...  
2016 ◽  
Vol 98 (6) ◽  
pp. 586-595 ◽  
Author(s):  
Kent R. Wehmeier ◽  
William Kurban ◽  
Chandrikha Chandrasekharan ◽  
Luisa Onstead-Haas ◽  
Arshag D. Mooradian ◽  
...  

2008 ◽  
Vol 86 (Supplement) ◽  
pp. 635
Author(s):  
R Tory ◽  
K Sachs-Barrable ◽  
J S. Hill ◽  
K M. Wasan

2017 ◽  
Vol 256 ◽  
pp. 1-6 ◽  
Author(s):  
Maria Pia Adorni ◽  
Eleonora Cipollari ◽  
Elda Favari ◽  
Ilaria Zanotti ◽  
Francesca Zimetti ◽  
...  

2015 ◽  
Vol 21 ◽  
pp. 85
Author(s):  
Monica Plazarte ◽  
Kent wehmeier ◽  
Salma Makhoul Ahwach ◽  
Melanie Thomas, ◽  
William Kurban ◽  
...  

Metabolites ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 640
Author(s):  
Kun Huang ◽  
Hanjoong Jo ◽  
Jing Echesabal-Chen ◽  
Alexis Stamatikos

Endothelial ABCA1 expression protects against atherosclerosis and this atheroprotective effect is partially attributed to enhancing apoAI-mediated cholesterol efflux. ABCA1 is a target gene for LXR and RXR; therefore, treating endothelial cells with LXR and/or RXR agonists may increase ABCA1 expression. We tested whether treating cultured immortalized mouse aortic endothelial cells (iMAEC) with the endogenous LXR agonist 22(R)-hydroxycholesterol, synthetic LXR agonist GW3965, endogenous RXR agonist 9-cis-retinoic acid, or synthetic RXR agonist SR11237 increases ABCA1 protein expression. We observed a significant increase in ABCA1 protein expression in iMAEC treated with either GW3965 or SR11237 alone, but no significant increase in ABCA1 protein was observed in iMAEC treated with either 22(R)-hydroxycholesterol or 9-cis-retionic acid alone. However, we observed significant increases in both ABCA1 protein expression and apoAI-mediated cholesterol efflux when iMAEC were treated with a combination of either 22(R)-hydroxycholesterol and 9-cis-retinoic acid or GW3965 and SR11237. Furthermore, treating iMAEC with either 22(R)-hydroxycholesterol and 9-cis-retinoic acid or GW3965 and SR11237 did not trigger an inflammatory response, based on VCAM-1, ICAM-1, CCL2, and IL-6 mRNA expression. Based on our findings, delivering LXR and RXR agonists precisely to endothelial cells may be a promising atheroprotective approach.


2014 ◽  
Vol 84 (1-2) ◽  
pp. 79-91 ◽  
Author(s):  
Amin F. Majdalawieh ◽  
Hyo-Sung Ro

Background: Foam cell formation resulting from disrupted macrophage cholesterol efflux, which is triggered by PPARγ1 and LXRα, is a hallmark of atherosclerosis. Sesamin and sesame oil exert anti-atherogenic effects in vivo. However, the exact molecular mechanisms underlying such effects are not fully understood. Aim: This study examines the potential effects of sesamin (0, 25, 50, 75, 100 μM) on PPARγ1 and LXRα expression and transcriptional activity as well as macrophage cholesterol efflux. Methods: PPARγ1 and LXRα expression and transcriptional activity are assessed by luciferase reporter assays. Macrophage cholesterol efflux is evaluated by ApoAI-specific cholesterol efflux assays. Results: The 50 μM, 75 μM, and 100 μM concentrations of sesamin up-regulated the expression of PPARγ1 (p< 0.001, p < 0.001, p < 0.001, respectively) and LXRα (p = 0.002, p < 0.001, p < 0.001, respectively) in a concentration-dependent manner. Moreover, 75 μM and 100 μM concentrations of sesamin led to 5.2-fold (p < 0.001) and 6.0-fold (p<0.001) increases in PPAR transcriptional activity and 3.9-fold (p< 0.001) and 4.2-fold (p < 0.001) increases in LXR transcriptional activity, respectively, in a concentration- and time-dependent manner via MAPK signaling. Consistently, 50 μM, 75 μM, and 100 μM concentrations of sesamin improved macrophage cholesterol efflux by 2.7-fold (p < 0.001), 4.2-fold (p < 0.001), and 4.2-fold (p < 0.001), respectively, via MAPK signaling. Conclusion: Our findings shed light on the molecular mechanism(s) underlying sesamin’s anti-atherogenic effects, which seem to be due, at least in part, to its ability to up-regulate PPARγ1 and LXRα expression and transcriptional activity, improving macrophage cholesterol efflux. We anticipate that sesamin may be used as a therapeutic agent for treating atherosclerosis.


2017 ◽  
Vol 37 (suppl_1) ◽  
Author(s):  
Marit Westerterp ◽  
Panagiotis Fotakis ◽  
Mireille Ouimet ◽  
Andrea E Bochem ◽  
Hanrui Zhang ◽  
...  

Plasma high-density-lipoprotein (HDL) has several anti-atherogenic properties, including its key role in functioning as acceptor for ATP-binding cassette A1 and G1 (ABCA1 and ABCG1) mediated cholesterol efflux. We have shown previously that macrophage Abca1/g1 deficiency accelerates atherosclerosis, by enhancing foam cell formation and inflammatory cytokine expression in atherosclerotic plaques. Macrophage cholesterol accumulation activates the inflammasome, leading to caspase-1 cleavage, required for IL-1β and IL-18 secretion. Several studies have suggested that inflammasome activation accelerates atherogenesis. We hypothesized that macrophage Abca1/g1 deficiency activates the inflammasome. In Ldlr -/- mice fed a Western type diet (WTD), macrophage Abca1/g1 deficiency increased IL-1β and IL-18 plasma levels (2-fold; P <0.001), and induced caspase-1 cleavage. Deficiency of the inflammasome components Nlrp3 or caspase-1 in macrophage Abca1/g1 knockouts reversed the increase in plasma IL-18 levels ( P <0.001), indicating these changes were inflammasome dependent. We found that macrophage Abca1/g1 deficiency induced caspase-1 cleavage in splenic CD115 + monocytes and CD11b + macrophages. While mitochondrial ROS production or lysosomal function were not affected, macrophage Abca1/g1 deficiency led to an increased splenic population of monocytes (2.5-fold; P <0.01). Monocytes secrete ATP, and as a result, ATP secretion from total splenic cells was increased (2.5-fold; P <0.01), likely contributing to inflammasome activation. Caspase-1 deficiency decreased atherosclerosis in macrophage Abca1/g1 deficient Ldlr -/- mice fed WTD for 8 weeks (225822 vs 138606 μm 2 ; P <0.05). Of therapeutic interest, one injection of reconstituted HDL (100 mg/kg) in macrophage Abca1/g1 knockouts decreased plasma IL-18 levels ( P <0.05). Tangier disease patients, with a homozygous loss-of-function for ABCA1, showed increased IL-1β and IL-18 plasma levels (3-fold; P <0.001), suggesting that cholesterol efflux pathways also suppress inflammasome activation in humans. These findings suggest that macrophage cholesterol efflux pathways suppress inflammasome activation, possibly contributing to the anti-atherogenic effects of HDL treatment.


Sign in / Sign up

Export Citation Format

Share Document