Effect of Val34Leu Polymorphism on the Activation of the Coagulation Factor XIII-A

2000 ◽  
Vol 84 (10) ◽  
pp. 595-600 ◽  
Author(s):  
H. Mikkola ◽  
G. Szôke ◽  
G. Haramura ◽  
L. Kárpáti ◽  
I. Balogh ◽  
...  

SummaryCoagulation factor XIII (FXIII) is a protransglutaminase involved in the last step of the coagulation cascade by stabilising the fibrin clot. Recently, a common variation (FXIII Val34Leu) has been associated with a decreased risk of myocardial infarction and deep venous thrombosis. Val34Leu is critically located near the thrombin activation site of FXIII-A. In this study we investigated its effects on the activation of FXIII. Both recombinant and platelet-derived FXIII Val34Leu variants were shown to be more susceptible to thrombin cleavage than the wild type FXIII. The rate of enzymatic activation of FXIII Val34Leu was found increased, however, the specific activity of fully activated wild type FXIII and the Val34Leu mutant did not differ. During the course of thrombin-induced activation of FXIII fibrin γ-chain dimerisation and α-chain polymerisation developed more rapidly with the Val34Leu mutant. The increased rate of fibrin stabilisation brought about by the Val34Leu FXIII seems to be paradoxically associated with a protective effect against pathological thrombosis. Abbreviations: AP, activation peptide of factor XIII; FXIII, blood coagulation factor XIII; FXIII-A, factor XIII subunit A; FXIII-A’, proteolytically activated subunit A; FXIII-B, factor XIII subunit B; SDS PAGE, sodium dodecyl sulfate polyacrylamide gel electrophoresis

1973 ◽  
Vol 51 (11) ◽  
pp. 1551-1555 ◽  
Author(s):  
Tony C. M. Seah ◽  
A. R. Bhatti ◽  
J. G. Kaplan

At any stage of growth of a wild-type bakers' yeast, some 20% of the catalatic activity of crude extracts is not precipitable by means of antibody prepared against the typical catalase (catalase T), whose purification and properties have been previously described. Some of this catalatic activity is due to the presence of an atypical catalase (catalase A), a heme protein, with a molecular weight estimated as 170 000 – 190 000, considerably lower than that of the usual catalases (225 000 – 250 000). Preparations of catalase A were found to be homogeneous in the analytical ultracentrifuge and in polyacrylamide gel electrophoresis. Its subunit molecular weight, determined from its iron content, was 46 500, virtually the same as that of the major band obtained in gel electrophoresis in the presence of sodium dodecyl sulfate, suggesting that the native protein is tetrameric. Its specific activity is in the range of those reported for other typical catalases.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2590-2590
Author(s):  
Maria C. Pintao ◽  
Dayse M. Lourenço ◽  
Francisco H.A. Maffei ◽  
Vania M. Morelli ◽  
Amelia G. Araujo ◽  
...  

Abstract Venous thrombosis (VT) is considered to be a multifactorial disorder in which several genetic and acquired risk factors interact dynamically. Coagulation factor XIII (FXIII) is an enzyme that participates in the final steps of the coagulation cascade. A number of gene variations have been described in both FXIII A and B subunits. FXIIIA Val34Leu, Tyr204Phe and Pro564Leu polymorphisms have been associated to increased specific activity of FXIII, and FXIIIA Val34Leu has been claimed to be protective against VT in several studies. In the FXIII B subunit, two common polymorphisms (His95Arg and G30899A) have been also reported, but its association with VT is uncertain. In addition, possible interactive effects between these polymorphisms and between these polymorphisms and the two most prevalent mutations associated with VT, factor V Leiden (FVL) and factor II (FII) G20210A mutations, have not been explored. In the present study, we determined the prevalence of the five above-mentioned FXIII polymorphisms in 418 consecutive patients with an objective diagnosis of VT and in 418 age-, gender- and race-matched controls in the BRATROS (Brazilian Thrombosis Study) case-control investigation. Genotyping for Val34Leu, Pro564Leu, His95Arg and G30899A was performed by PCR amplification followed by MseI, BstUI, NsiI and BspHI restriction digestion analysis, respectively. Genotyping for Tyr204Phe was performed by single-strand conformation polymorphism (SSCP) analysis followed by DNA sequencing of samples showing mobility shifts. Odds ratios (OR) as a measure of relative risks of VT, and 95% confidence intervals (CI95), were calculated. Stratified analyses were performed to search for interactions between the FXIII polymorphisms and between the FXIII polymorphisms, FVL and FII G20210A. Overall OR for VT linked to Val34Leu was 0,78 (CI95: 0,59–1,03); OR for heterozygotes (HT) was 0,85 (CI95: 0,64–1,13) and for homozygotes (HM) the OR was 0,33 (CI95: 0,15–0,71). Overall OR linked to G30899A was 1,06 (CI95: 0,81–1,39); OR for HT was 0,96 (CI95: 0,72–1,28) and for HM the OR was 1,58 (IC95: 1,00–2,49). No impacts over the risk of VT were observed, related to the other three polymorphisms investigated. When stratified analyses were performed to search for interactions, a trend towards increased risk of VT was detected when the Val34 allele was co-inherited with the Arg95 allele (OR 1,45; CI95: 0,97–2,18), and a trend towards decreased thrombotic risk was verified when the Leu34 and Leu564 alleles were co-inherited (OR 0,63; CI95: 0,40–1,00). Furthermore, increased risk for VT was observed when the mutant A30899 allele was co-inherited with FII G20210A, pointing to a notable interaction effect (OR 18,29; CI95: 2,41–138,87). The data confirm that homozygosity for FXIII Val34Leu is protective against the occurrence of VT in our population. In addition, the findings point to a previously unknown increased risk of VT related to homozygosity for FXIIIB G30899A of the order of 58%. Lastly, an impressive interactive effect (18-fold increased risk of VT) between FXIIIB G30899A and FII G20210A is reported for the first time. Taken together, the findings from the present investigation strengthen the clinical significance of FXIII in vascular thrombosis and reinforce the concept of VT as a multigenic disease.


1995 ◽  
Vol 74 (02) ◽  
pp. 584-589 ◽  
Author(s):  
Peter Vreken ◽  
René W L M Niessen ◽  
Marjolein Peters ◽  
Marianne C L Schaap ◽  
Johanna G M Zuithoff-Rijntjes ◽  
...  

SummaryAmplification and sequencing of exons I-XV of the gene encoding subunit A of coagulation factor XIII (FXIII) in a patient with severe subunit A deficiency revealed a single G → A base substitution at the last position of intron E, mutating the invariant AG dinucleotide splice acceptor site to AA. Northern blot analysis of FXIII subunit A mRNA levels in peripheral mononuclear leukocytes showed that this mutation leads to an undetectable FXIII subunit A mRNA level, suggesting that the mutant transcript is either highly unstable or only spliced at low efficiency. Despite this low mRNA level we were able to amplify cDNA fragments containing the exonV-exonVI junction. Sequence analysis showed that the AA dinucleotide is not recognized by the splicing machinery. Instead, an AG dinucleotide located seven bases downstream of the mutated splice acceptor site is used as alternative acceptor. The resulting, alternatively spliced, FXIII subunit A transcript contains a deletion of the first seven bases of exon VI, while translation continues out of frame and leads to a premature stop codon 27 bases thereafter.


Parasitology ◽  
2020 ◽  
Vol 147 (5) ◽  
pp. 559-565 ◽  
Author(s):  
Alicia Diosdado ◽  
Fernando Simón ◽  
Rodrigo Morchón ◽  
Javier González-Miguel

AbstractDirofilaria immitis is a parasitic nematode that survives in the circulatory system of suitable hosts for many years, causing the most severe thromboembolisms when simultaneous death of adult worms occurs. The two main mechanisms responsible for thrombus formation in mammals are the activation and aggregation of platelets and the generation of fibrin through the coagulation cascade. The aim of this work was to study the anticoagulant potential of excretory/secretory antigens from D. immitis adult worms (DiES) on the coagulation cascade of the host. Anticoagulant and inhibition assays respectively showed that DiES partially alter the coagulation cascade of the host and reduce the activity of the coagulation factor Xa, a key enzyme in the coagulation process. In addition, a D. immitis protein was identified by its similarity to the homologous serpin 6 from Brugia malayi as a possible candidate to form an inhibitory complex with FXa by sodium dodecyl sulfate polyacrylamide gel electrophoresis and mass spectrometry. These results indicate that D. immitis could use the anticoagulant properties of its excretory/secretory antigens to control the formation of blood clots in its immediate intravascular habitat as a survival mechanism.


Haematologica ◽  
2010 ◽  
Vol 95 (6) ◽  
pp. 956-962 ◽  
Author(s):  
V. Ivaskevicius ◽  
A. Biswas ◽  
C. Bevans ◽  
V. Schroeder ◽  
H. P. Kohler ◽  
...  

2015 ◽  
Vol 113 (04) ◽  
pp. 686-697 ◽  
Author(s):  
Heiko Herwald ◽  
Wolfgang Korte ◽  
Yannick Allanore ◽  
Christopher P. Denton ◽  
Marco Matucci Cerinic ◽  
...  

SummaryCoagulation factor XIII (FXIII), a plasma transglutaminase, is best known as the final enzyme in the coagulation cascade, where it is responsible for cross-linking of fibrin. However, a growing body of evidence has demonstrated that FXIII targets a wide range of additional substrates that have important roles in health and disease. These include antifibrinolytic proteins, with cross-linking of α2-antiplasmin to fibrin, and potentially fibrinogen, being the principal mechanism(s) whereby plasmin-mediated clot degradation is minimised. FXIII also acts on endothelial cell VEGFR-2 and α2β3 integrin, which ultimately leads to downregulation of the antiangiogenic protein thrombospondin-1, promoting angiogenesis and neovascularisation. Under infectious disease conditions, FXIII cross-links bacterial surface proteins to fibrinogen, resulting in immobilisation and killing, while during wound healing, FXIII induces cross-linking of the provisional matrix. The latter process has been shown to influence the interaction of leukocytes with the provisional extracellular matrix and promote wound healing. Through these actions, there are good rationales for evaluating the therapeutic potential of FXIII in diseases in which tissue repair is dysregulated or perturbed, including systemic sclerosis (scleroderma), invasive bacterial infections, and tissue repair, for instance healing of venous leg ulcers or myocardial injuries. Adequate levels of FXIII are also required in patients undergoing surgery to prevent or treat perioperative bleeding, and its augmentation in patients with/at risk for perioperative bleeding may also have potential clinical benefit. While there are preclinical and/or clinical data to support the use of FXIII in a range of settings, further clinical evaluation in these underexplored applications is warranted.


2021 ◽  
Vol 118 (3) ◽  
pp. e2014810118
Author(s):  
Katherine J. Kearney ◽  
Juliet Butler ◽  
Olga M. Posada ◽  
Clare Wilson ◽  
Samantha Heal ◽  
...  

Kallikrein (PKa), generated by activation of its precursor prekallikrein (PK), plays a role in the contact activation phase of coagulation and functions in the kallikrein-kinin system to generate bradykinin. The general dogma has been that the contribution of PKa to the coagulation cascade is dependent on its action on FXII. Recently this dogma has been challenged by studies in human plasma showing thrombin generation due to PKa activity on FIX and also by murine studies showing formation of FIXa-antithrombin complexes in FXI deficient mice. In this study, we demonstrate high-affinity binding interactions between PK(a) and FIX(a) using surface plasmon resonance and show that these interactions are likely to occur under physiological conditions. Furthermore, we directly demonstrate dose- and time-dependent cleavage of FIX by PKa in a purified system by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis and chromogenic assays. By using normal pooled plasma and a range of coagulation factor-deficient plasmas, we show that this action of PKa on FIX not only results in thrombin generation, but also promotes fibrin formation in the absence of FXII or FXI. Comparison of the kinetics of either FXIa- or PKa-induced activation of FIX suggest that PKa could be a significant physiological activator of FIX. Our data indicate that the coagulation cascade needs to be redefined to indicate that PKa can directly activate FIX. The circumstances that drive PKa substrate specificity remain to be determined.


2017 ◽  
Vol 24 (2) ◽  
pp. 345-352 ◽  
Author(s):  
Bettina Kárai ◽  
Zsuzsanna Hevessy ◽  
Eszter Szánthó ◽  
László Csáthy ◽  
Anikó Ujfalusi ◽  
...  

2014 ◽  
Vol 12 (2) ◽  
pp. 197-205 ◽  
Author(s):  
E. L. Hethershaw ◽  
A. L. Cilia La Corte ◽  
C. Duval ◽  
M. Ali ◽  
P. J. Grant ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document