Effects of Skin Mast Cells on Bleeding Time and Coagulation Activation at the Site of Platelet Plug Formation

1998 ◽  
Vol 79 (04) ◽  
pp. 843-847 ◽  
Author(s):  
Petteri Kauhanen ◽  
Petri Kovanen ◽  
Timo Reunala ◽  
Riitta Lassila

SummaryWe studied the effects of stimulated skin mast cells on bleeding time and thrombin generation which was measured using prothrombin fragment F 1+2 (F 1+2) and thrombin-antithrombin-III-complex (TAT). In 10 patients with urticaria pigmentosa (chronic cutaneous mast cell accumulation) the mean bleeding time was significantly prolonged in wounds made on urticaria pigmentosa lesions vs. normal skin (460 ± 34 vs. 342 ± 27 s, p = 0.005). In 10 atopic subjects skin incisions were made on prick-tested sites 30, 60, 120 and 240 min after administration of an allergen (acute mast cell stimulation), histamine or vehicle. The mean bleeding time was significantly prolonged at all time points, being maximal at 120 min (60% prolonged) in wounds made on allergen-stimulated skin areas (p <0.01) compared with histamine or vehicle sites. Administration of allergen or histamine lowered the TAT concentration in the bleeding-time blood. Furthermore, TAT and F 1+2 levels in the bleeding-time blood were lower at 60, 120 and 240 min after allergen or histamine application in comparison with samples collected at 30 min. We conclude that skin mast cells can regulate primary hemostasis by prolonging bleeding time and by inhibiting thrombin generation.

1986 ◽  
Vol 83 (1) ◽  
pp. 77-87 ◽  
Author(s):  
M.D. Kendall ◽  
A. Warley

Mast cell granules were examined by fully quantitative X-ray microanalysis of 20 cells in freeze-dried cryosections. The mast cells were situated mainly in the connective tissue of the thymic capsule of five adult male Carworth Sprague Europe rats. In addition 30 red blood cells were analysed from the same sections. Nineteen of the mast cells had granules rich in S and K. One cell had smaller granules, and in this cell the granules contained high [Ca] and [P] instead of high [S] and [K]. In the majority of cells (13) the S:K ratio was highly correlated and less than 2.2, whereas in the remaining six cells the individual granule ratios were very variable in any one cell and much higher. The mean granule [K] (994 +/− 57 mmol kg-1 dry wt) was about four times the mean cytoplasmic level of 227 +/− 81 mmol kg-1 dry wt. The existence of this difference in concentration between the granules and the cytoplasm suggests that the K in the granules must be bound. The relationship between the [K] and [S] is discussed with regard to the possible binding of heparin and amines in the granules.


2013 ◽  
Vol 304 (12) ◽  
pp. G1087-G1094 ◽  
Author(s):  
Rituraj Niranjan ◽  
Parm Mavi ◽  
Madhavi Rayapudi ◽  
Scott Dynda ◽  
Anil Mishra

Eosinophilic esophagitis (EoE) is a chronic allergic disease characterized by esophageal intraepithelial eosinophils, extracellular eosinophil granule deposition, induced mast cell accumulation, and epithelial cell hyperplasia. However, the processes involved in the development of a number of these characteristics are largely unknown. Herein, we tested the hypothesis whether induced mast cell accumulation in the esophagus has a role in promoting EoE pathogenesis. Accordingly, we induced experimental EoE in wild-type mice, mast cell-deficient WWv mice, and mast cell-reconstituted WWv mice. We report that esophageal mast cell numbers increase in parallel with eosinophils in a dose- and time-dependent manner following the induction of allergen-induced EoE. The induced mast cells are localized in the esophageal lamina propria and muscular mucosa but have no influence on promoting esophageal eosinophilia. The 5′-bromodeoxyuridine (BrdU) incorporation analysis indicated that mast cells have a significant role in muscle cell hyperplasia and hypertrophy. In addition, the wild-type and mast cell-reconstituted WWv mice showed a comparable number of BrdU+ cells in the esophageal muscular mucosa following allergen-induced EoE. In conclusion, we provide for the first time direct evidence that mast cell promotes muscle cell hyperplasia and hypertrophy and may have a significant role in promoting esophageal functional abnormalities in EoE.


1978 ◽  
Vol 26 (1) ◽  
pp. 14-21 ◽  
Author(s):  
G Berlin ◽  
L Enerbäck

A cytofluorometric method, based on berberine staining of mast cell heparin, was used for flow cytofluorometric counting and heparin quantitation of mast cells in crude peritoneal suspensions of growing rats. The automatic flow cytofluorometric counting of mast cells correlated well with hemocytometer cell counts. The mean mast cell heparin content obtained by flow cytofluorometry showed good agreement with such obtained by cytofluorometry of microscopically identified mast cells. The number of peritoneal mast cells and the mean mast cell heparin content was found to increase as the animals grew older. The results of the microscope fluorometric measurements suggested that the heparin content was normally distributed within mast cell populations of both young and old rats. However, the heparin distributions obtained by flow cytofluorometry were often positively skewed but did not fulfill the condition of the log-normal distribution.


Blood ◽  
1987 ◽  
Vol 69 (6) ◽  
pp. 1661-1666 ◽  
Author(s):  
SJ Galli ◽  
N Arizono ◽  
T Murakami ◽  
AM Dvorak ◽  
JG Fox

Abstract The normal skin and other tissues of adult mast cell-deficient WBB6F1- W/Wv or WCB6F1-Sl/Sld mice contain less than 1.0% the number of mast cells present in the corresponding tissues of the congenic normal (+/+) mice. As a result, genetically mast cell-deficient WBB6F1-W/Wv or WCB6F1-Sl/Sld mice are widely used for studies of mast cell differentiation and function. We found that mast cells developed at sites of idiopathic chronic dermatitis in WBB6F1-W/Wv mice and that the number of mast cells present in the skin of WBB6F1-W/Wv mice was proportional to the severity of the dermatitis (in ear skin, there were 33 +/- 4 mast cells/mm2 of dermis at sites of severe dermatitis v 9 +/- 3 at sites of mild dermatitis, 0.8 +/- 0.3 in skin without dermatitis, and 100 +/- 7 in the normal skin of congenic WBB6F1-+/+ mice; in back skin, the corresponding values were 2.0 +/- 0.6, 1.1 +/- 0.9, 0.025 +/- 0.025, and 26.2 +/- 3.2). The development of mast cells was a local, not systemic, consequence of the dermatitis. Thus, WBB6F1-W/Wv mice with severe dermatitis lacked mast cells in skin not showing signs of dermatitis and also in the peritoneal cavity, stomach, cecum, and tongue. Idiopathic chronic dermatitis was not associated with the local development of mast cells in WCB6F1-Sl/Sld mice, a mutant whose mast cell deficiency is due to a mechanism distinct from that of WBB6F1-W/Wv mice. These findings may have implications for understanding the nature of the mast cell deficiency in WBB6F1-W/Wv and WCB6F1-Sl/Sld mice and for the use of these mutants to analyze mast cell differentiation and function.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3634-3634
Author(s):  
Hiroki Mizuno ◽  
Takayuki Nakayama ◽  
Yasuhiko Miyata ◽  
Shigeki Saito ◽  
Nishiwaki Satoshi ◽  
...  

Abstract Abstract 3634 Background: A variety of inflammatory cells are present the microenvironment of Hodgkin lymphoma (HL); these cells enhance the survival of lymphoma cells and suppress tumor immunity. HL is frequently associated with the mast cell infiltration that correlates directly with disease severity, but the mechanisms underlying this relationship remain unclear. Aims: To examine whether mast cells can promote the growth of HL by modifying the tumor microenvironment and to determine whether mast cells can be a therapeutic target for HL. Methods: The human HL cell lines, L428, HDLM2, and KMH2, bone marrow-derived mast cells (BMMCs), and spleen-derived mast cells (SPMCs) from C57BL/6 mice were used in our analyses. The proliferative effect of in vitro co-culture was assessed by a colorimetric assay. HL transplantation assays were performed in NOD/SCID mice using HL cells with or without BMMCs. To study the effects of anti-cancer drugs on mast cell functions, BMMCs were treated with or without bortezomib or lenalidomide. Tumor size was measured and histopathological analyses were carried out to determine the effectiveness of the drugs. The expression profile of angiogenesis-related proteins was confirmed using the Angiogenesis Array Kit (R&D Systems, Minneapolis). To analyze the in vitro effects of bortezomib on the BMMCs, VEGF-A, CCL2, and b-hexosaminidase expressions were measured by ELISA and a b-hexosaminidase assay. The statistical significance of inter-group differences was evaluated by Student's t-test. Results: On in vitro co-culture assays, BMMCs weakly induced the proliferation of only KMH2 cells, and SPMCs did not induce the proliferation of any HL cell lines. On the in vivo transplantation assays, HL cells gave rise to tumors in NOD/SCID mice more rapidly when inoculated subcutaneously together with BMMCs than when inoculated HL cells alone. The mean size of tumors derived from inoculated HL cells with BMMCs was significantly greater than that of tumors derived from inoculated HL cells alone (e.g., L428 vs. L428 + BMMC, mean size: 108.39 mm3 vs. 225.19 mm3, respectively, at day 5; p = 0.0026). Microscopically, tumors derived from inoculated HL cells with BMMCs showed increased vasculature and fibrosis, whereas tumors derived from inoculated HL cells alone were generally hypovascularized with less fibrosis and were necrotic in most areas. An antibody array using cell lysates to determine the source of proangiogenic factors showed that HL cells minimally produced proangiogenic factors, but that mast cells produced them abundantly. Next, we examined whether bortezomib can target mast cell functions by inhibiting the secretion of mast cell products. Bortezomib inhibited degranulation of b-hexosaminidase, PGE2-induced rapid release of CCL2, and continuous release of vascular endothelial growth factor-A from mast cells, even at concentrations that did not induce cell death, and profoundly decreased expressions of angiopoietin-1, endoglin, HB-EGF and VEGF-B. On an in vivo transplantation assay in the presence or absence of bortezomib, the mean size of tumors derived from inoculated HL cells plus untreated BMMCs were significantly greater than those of tumors derived from inoculated HL cells plus bortezomib-treated BMMCs (e.g., L428 + intact BMMC vs. L428 + bortezomib-treated BMMC, mean size: 105.6 mm3 vs. 57.7 mm3, respectively, at day 6; p = 0.0255). Microscopically, tumors derived from inoculated HL cells together with intact BMMCs were highly vascularized and fibrotic, whereas tumors derived from inoculated HL cells plus bortezomib-treated BMMCs were generally not. Results from a similar analysis using lenalidomide showed that its effect on BMMCs was much lower than that of bortezomib. Discussion: Mast cells had the ability to promote the growth of HL on in vivo transplantation assay, but not on in vitro co-culture assay, indicating that there may be an indirect event via the promotion of angiogenesis that acts on the tumor microenvironment. Bortezomib effectively inhibited the mast cell-induced growth of Hodgkin's cell tumors in vivo by blocking the release of secretory granules from mast cells, but suppress of mast cells could not have a complete remission. As a treatment strategy for the future, it may be necessary to combine bortezomib with other drugs or irradiation. Conclusions: Mast cells have the ability to promote the growth of HL, and may be a promising target for the treatment of HL. Disclosures: No relevant conflicts of interest to declare.


2009 ◽  
Vol 57 (2) ◽  
pp. 263-274 ◽  
Author(s):  
Csaba Jakab ◽  
Attila Szász ◽  
Janina Kulka ◽  
Zsuzsa Schaff ◽  
Miklós Rusvai ◽  
...  

This report describes a case of a canine cutaneous grade I mast cell tumour which developed within a lipoma in the right axillar region of an 8-year-old male Boxer. Immunohistologically, the neoplastic mast cells were positive for serotonin, CD45 vimentin and p53, and negative for lysozyme, CD3 and CD79a expression. The proliferation index of the mast cell tumour based on the Ki-67 antigen was 6.1%. Between the benign neoplastic lipocytes and mastocytoma tumour cells intratumoural microvessels were detected by immunohistochemical staining using CD31 and claudin-5 as markers for vascular endothelium.


Blood ◽  
2007 ◽  
Vol 109 (12) ◽  
pp. 5363-5370 ◽  
Author(s):  
Claudia Waskow ◽  
Susanne Bartels ◽  
Susan M. Schlenner ◽  
Celine Costa ◽  
Hans-Reimer Rodewald

Abstract Cutaneous mast cells have important pathogenic roles in skin inflammation, but the signals regulating mast-cell numbers in healthy and inflamed skin are not fully understood. Mast-cell development depends on the receptor tyrosine kinase Kit as shown by a greater than 95% reduction of mast-cell numbers in hypomorphic (KitW/Wv) mutant mice that are widely used as a mast-cell deficiency model. Mast-cell numbers are normally very low in KitW/Wv mice, but numbers can strongly increase under inflammatory conditions. It remains elusive whether this inflammation-driven mast-cell accumulation is mediated by signals transmitted via the KitWv receptor or by other, Kit-independent stimuli. We show here, using viable Kit- null mice (KitW/W), that Kit is essential for mast-cell accumulation in phorbol-12-myristate-13-acetate (PMA)–treated, chronically inflamed skin. This increase in mast- cell numbers is strongly attenuated in KitW/Wv mice lacking mature lymphocytes (T, B, and natural killer [NK] cells). These data, together with reconstitution experiments, point at a role for lymphocytes in the regulation of mast-cell compartments under limiting Kit signaling. We conclude that inflammation-induced cutaneous mast-cell accumulation is dependent on Kit signaling strength, and, under limiting Kit signals, on cells of the adaptive immune system.


Author(s):  
Aya Kakinoki ◽  
Tsuyoshi Kameo ◽  
Shoko Yamashita ◽  
Kazuyuki Furuta ◽  
Satoshi Tanaka

Accumulating evidence suggests that mast cells should play critical roles in disruption and maintenance of intestinal homeostasis, although it remains unknown how they affect local microenvironment. Interleukin-9 (IL-9) was found to play critical roles in intestinal mast cell accumulation induced in various pathological conditions, such as parasite infection and oral allergen-induced anaphylaxis. Newly recruited intestinal mast cells trigger inflammatory responses and damage epithelial integrity through release of a wide variety of mediators including mast cell proteases. We established a novel culture model (mucosal mast cell-like cultured mast cells, MMC-like MCs), in which murine IL-3-dependent bone marrow-derived cultured mast cells (BMMCs) were further cultured in the presence of stem cell factor and IL-9. In MMC-like MCs, drastic up-regulation of Mcpt1 and Mcpt2 was found. Although histamine storage and tryptase activity were significantly downregulated in the presence of SCF and IL-9, it was entirely reversed when mast cells were co-cultured with a murine fibroblastic cell line, Swiss 3T3. MMC-like MCs underwent degranulation upon IgE-mediated antigen stimulation, which was found to less sensitive to lower concentrations of IgE in comparison with BMMCs. This model might be useful for investigation of the spatiotemporal changes of newly recruited intestinal mast cells.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Junling Wang ◽  
Huiyun Zhang ◽  
Wenjiao Zheng ◽  
Hua Xie ◽  
Hongling Yan ◽  
...  

Interleukin- (IL-) 18 and tryptase were previously reported to relate to asthma, but the correlation between these two potent proinflammatory molecules in asthma and their roles in mast cell accumulation remain uninvestigated. Using flow cytometric analysis technique and ovalbumin- (OVA-) sensitized mouse model, it was found that IL-18 and tryptase levels in the plasma of moderate and severe asthma were elevated, and they correlated well with each other. Tryptase and agonist peptides of protease activated receptor- (PAR-) 2 induced substantial quantity of IL-18 release. IL-18 and tryptase provoked mast cell accumulation in peritoneum of OVA-sensitized mice. OVA-sensitization increased number of IL-18 receptor (R)+mast cells. IL-18 and tryptase induced dramatic increase in IL-18R+mast cells and mean fluorescence intensity (MFI) of IL-18R on mast cells. Moreover, while IL-18 induced an increase in PAR-2+mast cells in nonsensitized mice, IL-18 and tryptase provoked increases in IL-4 and thymic stromal lymphopoietin (TSLP) in the peritoneum of OVA-sensitized mice. In summary, the correlation between IL-18 and tryptase in plasma of patients with asthma indicates close interactions between them, which should be considered for development of anti-IL-18 and antitryptase therapies. Interactions between IL-18 and tryptase may contribute to mast cell recruitment in asthma.


Sign in / Sign up

Export Citation Format

Share Document