SERPINS: ANTITHROMBIN AND OTHER INHIBITORS OF COAGULATION AND FIBRINOLYSIS. EVIDENCE FROM AMINO ACID SEQUENCES

Author(s):  
R W Carrell ◽  
P D Christey ◽  
D R Boswell

A number of the key inhibitors of coagulation and fibrinolysis have recently been shown to be members of the same superfamily of serine protease inhibitors, the serpins. The archetypes of the group are alpha-l-antitrypsin and antithrombin and it includes antiplasmin, C1-inhibitor, heparin cofactor II and the newly recognised inhibitors of plasminogen activators and activated Protein C. Alignment of their structures shows that they have the same skeletal three-dimensional conformation and, by inference, the same general function mechanisms.The serpins have a reactive centre, primarily dependent on a single amino acid, exteriorly placed on a stressed peptide loop. This functions by offering the cognate protease a high-affinity substrate that resists complete cleavage to form a tight 1:1 complex of inhibitor and protease that is subsequently removed from the circulation. The loop is vulnerable to cleavage with resulting loss of inhibitory activity. This irreversible switch is utilised: pathologically by venom and invasive bacterial proteases; and physiologically by the neutrophil leucocyte to modify local inflammatory responses. These mechanisms contribute to the changes seen in DIC and the shock syndromes.Modelling of antithrombin indicates the likely topological features involved in the binding of heparin, namely a sphere of positive charge centred on the A and D helices and involving Arg 47, Lys 125, Arg 129 and probably Arg 132 and Lys 133.Because the serpins are largely dependent for their specificityon a single amino acid it is now possible to precisely tailor inhibitory activity by site specific mutation. This has been used to produce recombinant antitrypsins that function as an improved inhibitor of neutrophil proteases (valine or leucine reactive centre), or as an analogue of antithrombin (arginine reactive centre). An elegant application of this approach is the engineered mutants of antiplasmin recently described by Holmes, Collen and colleagues (Leuven).

2001 ◽  
Vol 82 (9) ◽  
pp. 2169-2172 ◽  
Author(s):  
Naoko Nakagawa ◽  
Ritsuko Kubota ◽  
Toshimasa Nakagawa ◽  
Yoshinobu Okuno

To study the neutralizing epitopes of influenza B virus Victoria group strains, two monoclonal antibodies (MAbs) were used to select antigenic variants of the virus. MAbs 10B8 and 8E6 were found to react with B/Victoria group strains in three tests, peroxidase–antiperoxidase staining, haemagglutination inhibition and neutralization tests; no reactivity with B/Yamagata group strains was observed. Analysis of the deduced amino acid sequences of 10B8-induced variants identified a single amino acid deletion at residue 165 or 170, as well as a single amino acid substitution at residues 164 (Asp→Tyr), 165 (Asn→Ser or Thr) or 203 (Lys→Thr or Asn). A single amino acid substitution at residue 241 (Pro→Ser) was observed in 8E6-induced variants. Three-dimensional analysis showed that the epitopes for both MAbs were situated in close proximity to each other. Since B/Yamagata group strains are characterized by amino acid deletions at residues 164–166, the epitope for MAb 10B8 is strictly specific for B/Victoria group strains.


2006 ◽  
Vol 74 (1) ◽  
pp. 18-25 ◽  
Author(s):  
Jingli Jiang ◽  
Shangwu Chen ◽  
Fazheng Ren ◽  
Zhang Luo ◽  
Steve S Zeng

Yak milk casein derived from Qula, a traditional Tibetan acid curd cheese, was hydrolyzed by six commercially available proteases (Trypsin, Pepsin, Alcalase, Flavourzyme, Papain and Neutrase). These hydrolysates were assayed for their inhibitory activity of Angiotensin-I-converting enzyme (ACE). The hydrolysates obtained by Neutrase from Bacillus amyloliquefaciens showed the highest ACE inhibitory activity. The IC50 value of Neutrase-hydrolysate was 0·38 mg/ml. The hydrolysate obtained by Neutrase was further separated by consecutive ultra-filtration with 10 kDa and then with 6 kDa molecular weight cut-offs into different permeated parts and fractionated by gel filtration chromatography with a Sephadex G-25 column. The active fraction was subjected to RP-HPLC, in which five peaks were purified and identified. Amino acid sequence analysis confirmed that the peptides and origins were as follows: YQKFPQY (αs2-CN; f89–95), LPQNIPPL (β-CN; f70–77), SKVLPVPQK (β-CN; f168–176), LPYPYY (κ-CN; f56–61) and FLPYPYY (κ-CN; f55–61). Their amino acid sequences matched well with those of known bioactive peptides from bovine casein. The results indicated that yak milk casein could be a resource to generate antihypertensive peptides and be used as multifunctional active ingredients for many value-added functional foods as well as a traditional food protein.


2019 ◽  
Author(s):  
Kai Shimagaki ◽  
Martin Weigt

Statistical models for families of evolutionary related proteins have recently gained interest: in particular pairwise Potts models, as those inferred by the Direct-Coupling Analysis, have been able to extract information about the three-dimensional structure of folded proteins, and about the effect of amino-acid substitutions in proteins. These models are typically requested to reproduce the one- and two-point statistics of the amino-acid usage in a protein family, i.e. to capture the so-called residue conservation and covariation statistics of proteins of common evolutionary origin. Pairwise Potts models are the maximum-entropy models achieving this. While being successful, these models depend on huge numbers of ad hoc introduced parameters, which have to be estimated from finite amount of data and whose biophysical interpretation remains unclear. Here we propose an approach to parameter reduction, which is based on selecting collective sequence motifs. It naturally leads to the formulation of statistical sequence models in terms of Hopfield-Potts models. These models can be accurately inferred using a mapping to restricted Boltzmann machines and persistent contrastive divergence. We show that, when applied to protein data, even 20-40 patterns are sufficient to obtain statistically close-to-generative models. The Hopfield patterns form interpretable sequence motifs and may be used to clusterize amino-acid sequences into functional sub-families. However, the distributed collective nature of these motifs intrinsically limits the ability of Hopfield-Potts models in predicting contact maps, showing the necessity of developing models going beyond the Hopfield-Potts models discussed here.


1987 ◽  
Author(s):  
A Heckel ◽  
K M Hasselbach

Up to now the three-dimensional structure of t-PA or parts of this enzyme is unknown. Using computer graphical methods the spatial structure of the enzymatic part of t-PA is predicted on the hypothesis, the three-dimensional backbone structure of t-PA being similar to that of other serine proteases. The t-PA model was built up in three steps:1) Alignment of the t-PA sequence with other serine proteases. Comparison of enzyme structures available from Brookhaven Protein Data Bank proved elastase as a basis for modeling.2) Exchange of amino acids of elastase differing from the t-PA sequence. The replacement of amino acids was performed such that backbone atoms overlapp completely and side chains superpose as far as possible.3) Modeling of insertions and deletions. To determine the spatial arrangement of insertions and deletions parts of related enzymes such as chymotrypsin or trypsin were used whenever possible. Otherwise additional amino acid sequences were folded to a B-turn at the surface of the proteine, where all insertions or deletions are located. Finally the side chain torsion angles of amino acids were optimised to prevent close contacts of neigh bouring atoms and to improve hydrogen bonds and salt bridges.The resulting model was used to explain binding of arginine 560 of plasminogen to the active site of t-PA. Arginine 560 interacts with Asp 189, Gly 19 3, Ser 19 5 and Ser 214 of t-PA (chymotrypsin numbering). Furthermore interaction of chromo-genic substrate S 2288 with the active site of t-PA was studied. The need for D-configuration of the hydrophobic amino acid at the N-terminus of this tripeptide derivative could be easily explained.


1996 ◽  
Vol 76 (3) ◽  
pp. 887-926 ◽  
Author(s):  
H. A. Fozzard ◽  
D. A. Hanck

Cardiac and nerve Na channels have broadly similar functional properties and amino acid sequences, but they demonstrate specific differences in gating, permeation, ionic block, modulation, and pharmacology. Resolution of three-dimensional structures of Na channels is unlikely in the near future, but a number of amino acid sequences from a variety of species and isoforms are known so that channel differences can be exploited to gain insight into the relationship of structure to function. The combination of molecular biology to create chimeras and channels with point mutations and high-resolution electrophysiological techniques to study function encourage the idea that predictions of structure from function are possible. With the goal of understanding the special properties of the cardiac Na channel, this review examines the structural (sequence) similarities between the cardiac and nerve channels and considers what is known about the relationship of structure to function for voltage-dependent Na channels in general and for the cardiac Na channels in particular.


1998 ◽  
Vol 330 (1) ◽  
pp. 321-327 ◽  
Author(s):  
Norihiro AZUMA ◽  
Hee-Chan SEO ◽  
Øystein LIE ◽  
Qiang FU ◽  
M. Robert GOULD ◽  
...  

Prosaposin is the precursor of four small glycoproteins, saposins A-D, that activate lysosomal sphingolipid hydrolysis. A full-length cDNA encoding prosaposin from chicken brain was isolated by PCR. The deduced amino acid sequence predicted that, similarly to human and other mammalian species studied, chicken prosaposin contains 518 residues, including four domains that correspond to saposins A-D. There was 59% identity and 76% similarity of human and chicken prosaposin amino acid sequences. The basic three-dimensional structures of these saposins is predicted to be similar on the basis of the conservation of six cysteine residues and an N-glycosylation site. Identity of amino acid sequences was higher among saposins A, B and D than in saposin C. The predicted amino acid sequence of saposin B matched exactly that of purified chicken saposin B protein. The chicken prosaposin gene was mapped to a single locus, PSAP, in chicken linkage group E11C10 and is closely linked to the ACTA2 locus. This confirms the homology between chicken and human prosaposins and defines a new conserved segment with human chromosome 10q21-q24.


1999 ◽  
Vol 65 (10) ◽  
pp. 4652-4658 ◽  
Author(s):  
Kohji Ohdan ◽  
Takashi Kuriki ◽  
Hiroki Kaneko ◽  
Jiro Shimada ◽  
Toshikazu Takada ◽  
...  

ABSTRACT Complete (Ba-L) and truncated (Ba-S) forms of α-amylases fromBacillus subtilis X-23 were purified, and the amino- and carboxyl-terminal amino acid sequences of Ba-L and Ba-S were determined. The amino acid sequence deduced from the nucleotide sequence of the α-amylase gene indicated that Ba-S was produced from Ba-L by truncation of the 186 amino acid residues at the carboxyl-terminal region. The results of genomic Southern analysis and Western analysis suggested that the two enzymes originated from the same α-amylase gene and that truncation of Ba-L to Ba-S occurred during the cultivation of B. subtilis X-23 cells. Although the primary structure of Ba-S was approximately 28% shorter than that of Ba-L, the two enzyme forms had the same enzymatic characteristics (molar catalytic activity, amylolytic pattern, transglycosylation ability, effect of pH on stability and activity, optimum temperature, and raw starch-binding ability), except that the thermal stability of Ba-S was higher than that of Ba-L. An analysis of the secondary structure as well as the predicted three-dimensional structure of Ba-S showed that Ba-S retained all of the necessary domains (domains A, B, and C) which were most likely to be required for functionality as α-amylase.


1987 ◽  
Vol 7 (6) ◽  
pp. 2231-2242 ◽  
Author(s):  
J E Rudolph ◽  
M Kimble ◽  
H D Hoyle ◽  
M A Subler ◽  
E C Raff

The genomic DNA sequence and deduced amino acid sequence are presented for three Drosophila melanogaster beta-tubulins: a developmentally regulated isoform beta 3-tubulin, the wild-type testis-specific isoform beta 2-tubulin, and an ethyl methanesulfonate-induced assembly-defective mutation of the testis isoform, B2t8. The testis-specific beta 2-tubulin is highly homologous to the major vertebrate beta-tubulins, but beta 3-tubulin is considerably diverged. Comparison of the amino acid sequences of the two Drosophila isoforms to those of other beta-tubulins indicates that these two proteins are representative of an ancient sequence divergence event which at least preceded the split between lines leading to vertebrates and invertebrates. The intron/exon structures of the genes for beta 2- and beta 3-tubulin are not the same. The structure of the gene for the variant beta 3-tubulin isoform, but not that of the testis-specific beta 2-tubulin gene, is similar to that of vertebrate beta-tubulins. The mutation B2t8 in the gene for the testis-specific beta 2-tubulin defines a single amino acid residue required for normal assembly function of beta-tubulin. The sequence of the B2t8 gene is identical to that of the wild-type gene except for a single nucleotide change resulting in the substitution of lysine for glutamic acid at residue 288. This position falls at the junction between two major structural domains of the beta-tubulin molecule. Although this hinge region is relatively variable in sequence among different beta-tubulins, the residue corresponding to glu 288 of Drosophila beta 2-tubulin is highly conserved as an acidic amino acid not only in all other beta-tubulins but in alpha-tubulins as well.


2011 ◽  
Vol 66 (5-6) ◽  
pp. 305-312 ◽  
Author(s):  
Dessislava Georgieva ◽  
Kerstin Greunke ◽  
Raghuvir K. Arni ◽  
Christian Betzel

Api SI and Api SII are serine proteases of the honeybee venom containing allergenic determinants. Each protease consists of two structural modules: an N-terminal CUB (Api SI) or a clip domain (Api SII) and a C-terminal serine protease-like (SPL) domain. Both domains are connected with a linker peptide. The knowledge about the structure and function of Api SI and Api SII is limited mainly to their amino acid sequences. We constructed 3-D models of the two proteases using their amino acid sequences and crystallographic coordinates of related proteins. The models of the SPL domains were built using the structure of the prophenoloxidase-activating factor (PPAF)-II as a template. For modelling of the Api SI CUB domain the coordinates of porcine spermadhesin PSP-I were used. The models revealed the catalytic and substrate-binding sites and the negatively charged residue responsible for the trypsin-like activity. IgE-binding and antigenic sites in the two allergens were predicted using the models and programs based on the structure of known epitopes. Api SI and Api SII show structural and functional similarity to the members of the PPAF-II family. Most probably, they are part of the defence system of Apis mellifera


Sign in / Sign up

Export Citation Format

Share Document