Does Increased Platelet Release Normalize During Anti-Hypertensive Treatment?

1987 ◽  
Vol 58 (03) ◽  
pp. 834-838
Author(s):  
Knut Lande ◽  
Sverre Erik Kjeldsen ◽  
Ivar Eide ◽  
Paul Leren ◽  
Knut Gjesdal

SummaryBlood platelet function was evaluated in 10 men, all 50 years old, with untreated, mild hypertension. Each patient was examined four times: At the beginning of the study, after 5 weeks on placebo treatment, after the following 5 weeks on propranolol 160 mg daily, and finally after a second period of 5 weeks on placebo. At baseline the plasma level of the platelet release product (β-thromboglobulin (BTG) was 41.6 (30.5-57.0) μg/l (median and 95% confidence interval). During the first placebo period BTG was normalized to 21.0 (14.1-25.9) μg/l. While systolic blood pressure and heart rate fell during β-adrenergic receptor blockade, BTG remained unchanged throughout the rest of the observation periods. Platelet size increased significantly during treatment with β-blocker. The present study indicates that the normalization of elevated platelet function which previously has been reported to occur during anti-hypertensive drug therapy, may be explained by patient adaptation to the blood sampling procedure.

1973 ◽  
Vol 30 (03) ◽  
pp. 494-498 ◽  
Author(s):  
G de Gaetano ◽  
J Vermylen

SummaryThrombelastograms of both native blood and re-calcified platelet-rich plasma samples taken from subjects given a single oral dose of aspirin (1 gram) were not significantly different from the pretreatment recordings. Aspirin also did not modify the thrombelastogram when preincubated in vitro with platelet-rich plasma at concentrations inhibiting the platelet “release reaction” by collagen. Thrombelastography therefore cannot evaluate the effect of aspirin on platelet function.


1973 ◽  
Vol 30 (02) ◽  
pp. 334-338 ◽  
Author(s):  
Felisa C. Molinas

SummaryIt has been postulated that the high phenol and phenolic acids plasmatic levels found in patients with chronic renal failure are contributory factors in the abnormal platelet function described in these patients. This hypothesis was corroborated by “in vitro” studies showing the deleterious effect of these compounds on certain platelet function after pre-incubation of PRP with phenol and phenolic compounds. The present studies were conducted to determine the influence of phenolic compounds on platelet release reaction. It was found that phenol inhibited from 62.5 to 100% the effect of the aggregating agents thrombin, adrenaline and ADP on platelet 5-HT-14C release. The phenolic acids p-, m-, and o-HPAA inhibited from 36.35 to 94.8% adrenaline and ADP-induced platelet 5-HT-14C release. Adrenaline-induced platelet ADP release was inhibited from 27.45 to 38.10% by the phenolic compounds. These findings confirm the hypothesis that phenolic compounds interfere with platelet function through the inhibition of the release reaction.


2014 ◽  
Vol 112 (11) ◽  
pp. 951-959 ◽  
Author(s):  
Morten Eriksen ◽  
Arnfinn Ilebekk ◽  
Alessandro Cataliotti ◽  
Cathrine Rein Carlson ◽  
Torstein Lyberg ◽  
...  

SummaryBradykinin (BK) receptor-2 (B2R) and β2-adrenergic receptor (β2AR) have been shown to form heterodimers in vitro. However, in vivo proofs of the functional effects of B2R-β2AR heterodimerisation are missing. Both BK and adrenergic stimulation are known inducers of tPA release. Our goal was to demonstrate the existence of B2R-β2AR heterodimerisation in myocardium and to define its functional effect on cardiac release of tPA in vivo. We further investigated the effects of a non-selective β-blocker on this receptor interplay. To investigate functional effects of B2R-β2AR heterodimerisation (i. e. BK transactivation of β2AR) in vivo, we induced serial electrical stimulation of cardiac sympathetic nerves (SS) in normal pigs that underwent concomitant BK infusion. Both SS and BK alone induced increases in cardiac tPA release. Importantly, despite B2R desensitisation, simultaneous BK infusion and SS (BK+SS) was characterised by 2.3 ± 0.3-fold enhanced tPA release compared to SS alone. When β-blockade (propranolol) was introduced prior to BK+SS, tPA release was inhibited. A persistent B2R-β2AR heterodimer was confirmed in BK-stimulated and nonstimulated left ventricular myocardium by immunoprecipitation studies and under non-reducing gel conditions. All together, these results strongly suggest BK transactivation of β2AR leading to enhanced β2AR-mediated release of tPA. Importantly, non-selective β-blockade inhibits both SS-induced release of tPA and the functional effects of B2R-β2AR heterodimerisation in vivo, which may have important clinical implications.


1989 ◽  
Vol 53 (3) ◽  
pp. 319-325 ◽  
Author(s):  
A. Łukaszyk ◽  
A. Bodzenta-Łukaszyk ◽  
A. Gabryelewicz ◽  
M. Bielawiec

2013 ◽  
Vol 45 (2) ◽  
pp. 342-350 ◽  
Author(s):  
JOSHUA P. WHITTAKER ◽  
MATTHEW D. LINDEN ◽  
VERNON G. COFFEY

2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Anita Sahu ◽  
Sromona D Mukherjee ◽  
Conner P Witherow ◽  
Kate Stenson ◽  
John Tesmer ◽  
...  

Insulin impairs β2-adrenergic receptor (β2AR) function via trans-phosphorylation through G protein-coupled receptor kinase 2 (GRK2). However, less is known about dephosphorylation mechanisms mediated by protein phosphatase 2A (PP2A) during this insulin-β2AR cross-talk. Pharmacologic or genetic inhibition of phosphoinositide 3-kinase γ (PI3Kγ) unexpectedly resulted in significant reduction of insulin-mediated β2AR phosphorylation. Interestingly, β2AR-associated phosphatase activity was inhibited by insulin but was reversed by knock-down of PI3Kγ showing negative regulation of PP2A by PI3Kγ. Co-immunoprecipitation and surface plasmon resonance studies using purified proteins showed that GRK2 and PI3Kγ form a complex and could be recruited to β2ARs as GRK2 interacts with insulin receptor substrate (IRS) following insulin treatment. Further, co-immunoprecipitation studies showed that PI3Kγ directly interacted with both IRS-1 and IRS-2 but only IRS-2 interaction with PI3Kγ significantly increased following insulin stimulation. These results indicated that PI3Kγ could also be directly recruited to the receptor complex by IRS-2. Consistently, β-blocker pretreatment did not reduce insulin-mediated β2AR phosphorylation indicating agonist- and Gβγ-independent non-canonical regulation of receptor function. Mechanistically, PI3Kγ inhibits PP2A activity at the βAR complex by phosphorylating an intracellular inhibitor of PP2A (I2PP2A). Knock-down or CRISPR ablation of endogenous I2PP2A unlocked PP2A inhibition mediating β2AR dephosphorylation showing an unappreciated acute regulation of PP2A in mediating insulin-β2AR cross-talk.


2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Il-man Kim ◽  
Yaoping Tang ◽  
Yongchao Wang ◽  
Kyoung-mi Park ◽  
Qiuping Hu

MicroRNA (miR)-150 is down-regulated in patients with acute myocardial infarction (AMI), atrial fibrillation, dilated and ischemic cardiomyopathy as well as in various mouse heart failure (HF) models. Circulating miR-150 has been recently proposed as a better biomarker of HF than clinically used markers such as brain natriuretic peptide. We recently showed that β-arrestin1-biased β1-adrenergic receptor (β1AR) cardioprotective signaling activated by the β-arrestin-biased β-blocker, carvedilol (Carv) stimulates the processing of miR-150 in the heart (see figure A). However, the potential role of miR-150 in ischemic injury and HF is unknown. Here, we show that genetic deletion of miR-150 in mice causes abnormalities in cardiac structural and functional remodeling after MI. The cardioprotective roles of miR-150 during ischemic injury were attributed to repression of the pro-apoptotic genes egr2 (zinc binding transcription factor induced by ischemia) and p2x7r (pro-inflammatory ATP receptor) [see figure B]. These findings reveal a pivotal role for miR-150 as a regulator of cardiomyocyte survival during cardiac injury. In conclusion, our study will help to stratify HF patients that may respond better to β-arrestin-biased β-blockers, which is guided by circulating levels of miR-150.


Sign in / Sign up

Export Citation Format

Share Document