Changes in G-Actin after Platelet Activation in Platelet Rich Plasma

1992 ◽  
Vol 68 (06) ◽  
pp. 727-730 ◽  
Author(s):  
S Heptinstall ◽  
J Glenn ◽  
P Spangenberg

SummaryWe have used the DNase I inhibition assay to study changes in G-actin after platelet activation in platelet-rich plasma (PRP) induced by ADP. Because of problems associated with depolymerization of F-actin after lysis of ADP-activated platelets in the presence of plasma, G-actin was measured using a lysis buffer that contained formaldehyde to prevent any depolymerization of F-actin.Different patterns of response were seen depending on the concentration of ADP used, and these were modified by avoiding aggregation by either not stirring the sample or by adding EDTA. The results show rapid conversion of G-actin to F-actin in association with shape change, and there is a further decrease in G-actin associated with irreversible platelet aggregation. Thus evidence is presented that actin polymerization occurs in two phases after ADP stimulation.

2007 ◽  
Vol 98 (07) ◽  
pp. 192-200 ◽  
Author(s):  
Joseph Jakubowski ◽  
You FuLi ◽  
Marc Barnard ◽  
Marsha Fox ◽  
Matthew Linden ◽  
...  

SummaryThe novel thienopyridine prodrug prasugrel, a platelet P2Y12 ADP receptor antagonist, requires in vivo metabolism for activity. Although pharmacological data have been collected on the effects of prasugrel on platelet aggregation,there are few data on the direct effects of the prasugrel’s active metabolite, R-138727, on other aspects of platelet function. Here we examined the effects of R-138727 on thrombo-inflammatory markers of platelet activation, and the possible modulatory effects of other blood cells, calcium, and aspirin. Blood (PPACK or citrate anticoagulated) from healthy donors pre- and post-aspirin was incubated with R-138727 and the response to ADP assessed in whole blood or platelet-rich plasma (PRP) by aggregometry and flow cytometric analysis of leukocyte-platelet aggregates,platelet surface P-selectin, and GPIIb-IIIa activation. Low-micromolar concentrations of R-138727 resulted in a rapid and consistent in-hibition of these ADP-stimulated thrombo-inflammatory markers.These rapid kinetics required physiological calcium levels, but were largely unaffected by aspirin. Lower IC50 values in whole blood relative to PRP suggested that other blood cells affect ADP-induced platelet activation and hence the net inhibition by R-138727. R-138727 did not inhibit P2Y12-mediated ADP-induced shape change, even at concentrations that completely inhibited platelet aggregation, confirming the specificity of R-138727 for P2Y12. In conclusion, R-138727, the active metabolite of prasugrel, results in rapid, potent, consistent, and selective inhibition of P2Y12-mediated up-regulation of thromboinflammatory markers of platelet activation.This inhibition is enhanced in the presence other blood cells and calcium,but not aspirin.


2008 ◽  
Vol 14 (3) ◽  
pp. 295-302 ◽  
Author(s):  
I. Anita Jagroop ◽  
Dimitri P. Mikhailidis

There is evidence linking raised plasma fibrinogen (fib) and platelet hyperactivity with vascular events. One way to inhibit platelets is to block the platelet membrane glycoprotein (GP) IIb/IIIa receptor, which binds circulating fib or von Willebrand factor and cross-links platelets at the final common pathway to platelet aggregation. Tirofiban is a potent and specific fib receptor antagonist, used in the treatment of unstable angina. The authors assessed the effect of tirofiban on spontaneous platelet aggregation (SPA), fib-induced, serotonin (5HT)-induced, and adenosine diphosphate (ADP)-induced aggregation in whole blood by calculating the percentage free platelet count. These various agonists were used alone and in combination. The authors also measured the effect of tirofiban on agonists-induced (ADP, 5HT) platelet shape change (PSC). The effect of fib on PSC was also evaluated in platelet-rich plasma using a high-resolution (0.07 fL) channelyzer. Tirofiban significantly inhibited SPA, fib (2, 4, 8 g/L), ADP, ADP + fib combination, and 5HT-induced aggregation. Tirofiban had no effect on agonist-induced PSC. There was no apparent change in platelet volume with fib. In conclusion, tirofiban does not appear to have an effect on PSC, an early phase of platelet activation. Tirofiban seems to be a nonspecific and an effective inhibitor of platelet aggregation (a later phase of platelet activation) in whole blood. The clinical significance of these findings remains to be established.


2001 ◽  
Vol 85 (04) ◽  
pp. 694-701 ◽  
Author(s):  
Anita Eckly ◽  
Jean-Louis Gendrault ◽  
Béatrice Hechler ◽  
Jean-Pierre Cazenave ◽  
Christian Gachet

SummaryThe relative contributions of the P2Y1 and P2YT receptors to the morphological changes induced in platelets by ADP or ADP-releasing agonists were assessed using two P2 antagonists, A2P5P and ARC67085, selective for P2Y1 and P2YT, respectively. The P2Y1 receptor was found to be involved in i) the centralization of secretory granules elicited by ADP, ii) the formation of filopodia induced by released ADP in weakly activated platelets and iii) actin polymerization and the cyto-skeletal translocation of cdc42, rac1 and rhoA, in an integrin IIb 3 dependent manner, in ADP-stimulated platelets. In contrast, the P2YT receptor was shown i) to be essential for the formation of stable macro-aggregates, ii) to enhance actin polymerization and the cytoskeletal translocation of small GTPases, probably through amplification of platelet aggregation, and iii) not to be involved in the early steps of platelet activation since its blockade did not affect the cytoskeletal translocation of rhoA.


1998 ◽  
Vol 79 (01) ◽  
pp. 177-185 ◽  
Author(s):  
Ashia Siddiqua ◽  
Michael Wilkinson ◽  
Vijay Kakkar ◽  
Yatin Patel ◽  
Salman Rahman ◽  
...  

SummaryWe report the characterization of a monoclonal antibody (MAb) PM6/13 which recognises glycoprotein IIIa (GPIIIa) on platelet membranes and in functional studies inhibits platelet aggregation induced by all agonists examined. In platelet-rich plasma, inhibition of aggregation induced by ADP or low concentrations of collagen was accompanied by inhibition of 5-hydroxytryptamine secretion. EC50 values were 10 and 9 [H9262]g/ml antibody against ADP and collagen induced responses respectively. In washed platelets treated with the cyclooxygenase inhibitor, indomethacin, PM6/13 inhibited platelet aggregation induced by thrombin (0.2 U/ml), collagen (10 [H9262]g/ml) and U46619 (3 [H9262]M) with EC50 = 4, 8 and 4 [H9262]g/ml respectively, without affecting [14C]5-hydroxytryptamine secretion or [3H]arachidonate release in appropriately labelled cells. Studies in Fura 2-labelled platelets revealed that elevation of intracellular calcium by ADP, thrombin or U46619 was unaffected by PM6/13 suggesting that the epitope recognised by the antibody did not influence Ca2+ regulation. In agreement with the results from the platelet aggregation studies, PM6/13 was found to potently inhibit binding of 125I-fibrinogen to ADP activated platelets. Binding of this ligand was also inhibited by two other MAbs tested, namely SZ-21 (also to GPIIIa) and PM6/248 (to the GPIIb-IIIa complex). However when tested against binding of 125I-fibronectin to thrombin stimulated platelets, PM6/13 was ineffective in contrast with SZ-21 and PM6/248, that were both potent inhibitors. This suggested that the epitopes recognised by PM6/13 and SZ-21 on GPIIIa were distinct. Studies employing proteolytic dissection of 125I-labelled GPIIIa by trypsin followed by immunoprecipitation with PM6/13 and analysis by SDS-PAGE, revealed the presence of four fragments at 70, 55, 30 and 28 kDa. PM6/13 did not recognize any protein bands on Western blots performed under reducing conditions. However Western blotting analysis with PM6/13 under non-reducing conditions revealed strong detection of the parent GP IIIa molecule, of trypsin treated samples revealed recognition of an 80 kDa fragment at 1 min, faint recognition of a 60 kDa fragment at 60 min and no recognition of any product at 18 h treatment. Under similar conditions, SZ-21 recognized fragments at 80, 75 and 55 kDa with the 55kDa species persisting even after 18 h trypsin treatment. These studies confirm the epitopes recognised by PM6/13 and SZ-21 to be distinct and that PM6/13 represents a useful tool to differentiate the characteristics of fibrinogen and fibronectin binding to the GPIIb-IIIa complex on activated platelets.


1988 ◽  
Vol 60 (02) ◽  
pp. 209-216 ◽  
Author(s):  
Chantal Lalau Keraly ◽  
Raelene L Kinlough-Rathbone ◽  
Marian A Packham ◽  
Hidenori Suzuki ◽  
J Fraser Mustard

SummaryConditions affecting the responses of human platelets to epinephrine were examined. In platelet-rich plasma prepared from blood anticoagulated with hirudin or PPACK (D-pheny- lalanyl-L-prolyl-L-arginine chloromethyl ketone), epinephrine did not cause shape change or aggregation. In a Tyrode-albumin- apyrase solution containing a concentration of Ca2+ in the physiological range, and fibrinogen, epinephrine in concentrations as high as 40 μM did not induce platelet shape change, caused either no primary aggregation or very slight primary aggregation, and did not induce thromboxane formation, release of dense granule contents, or secondary aggregation. In contrast, in citrated platelet-rich plasma, epinephrine induced two phases of aggregation. This is not attributable to the generation of traces of thrombin since the same effects were evident when blood was taken into a combined citrate-hirudin anticoagulant or a combined citrate-PPACK anticoagulant. In a modified Tyrode-albu- min-apyrase solution containing approximately 20 μM Ca2+, 1 mM Mg2+, and fibrinogen, epinephrine induced extensive aggregation after a lag phase, but no primary phase was evident; thromboxane formation and release of dense granule contents accompanied the aggregation response. These responses were also observed when PPACK was included with the acid-citrate- dextrose anticoagulant, and in the washing and resuspending fluids. In the presence of aspirin or the thromboxane receptor blocker BM 13.177 a few small aggregates were detected by particle counting and by scanning electron microscopy; with the latter inhibitor, the platelets in the aggregates retained their disc shape; secondary aggregation and the responses associated with it did not occur. Thus thromboxane A2 formation is not necessary for the formation of these small aggregates, but is required for extensive aggregation and release. As with other weak agonists, the close platelet-to-platelet contact in the low Ca2+ medium appears to be necessary for full secondary aggregation. Omission of fibrinogen from the low Ca2+ medium prevented both primary and secondary aggregation in response to epinephrine. An antibody (10E5) to the glycoprotein Ilb/IIIa complex was completely inhibitory in the presence of fibrinogen. Thus the response of human platelets to epinephrine is influenced by the concentration of Ca2+ and the presence of fibrinogen in the medium in which they are suspended.


1992 ◽  
Vol 67 (01) ◽  
pp. 126-130 ◽  
Author(s):  
Olivier Spertini ◽  
Jacques Hauert ◽  
Fedor Bachmann

SummaryPlatelet function defects observed in chronic alcoholics are not wholly explained by the inhibitory action of ethanol on platelet aggregation; they are not completely reproduced either in vivo by short-term ethanol perfusion into volunteers or in vitro by the addition of ethanol to platelet-rich plasma. As acetaldehyde (AcH) binds to many proteins and impairs cellular activities, we investigated the effect of this early degradation product of ethanol on platelets. AcH formed adducts with human platelets at neutral pH at 37° C which were stable to extensive washing, trichloracetic acid hydrolysis and heating at 100° C, and were not reduced by sodium borohydride. The amount of platelet adducts formed was a function of the incubation time and of the concentration of AcH in the reaction medium. At low AcH concentrations (<0.2 mM), platelet bound AcH was directly proportional to the concentration of AcH in the reaction medium. At higher concentrations (≥0.2 mM), AcH uptake by platelets tended to reach a plateau. The amount of adducts was also proportional to the number of exposures of platelets to pulses of 20 pM AcH.AcH adducts formation severely impaired platelet aggregation and shape change induced by ADP, collagen and thrombin. A positive correlation was established between platelet-bound AcH and inhibition of aggregation.SDS-PAGE analysis of AcH adducts at neutral pH demonstrated the binding of [14C]acetaldehyde to many platelet proteins. AcH adduct formation with membrane glycoproteins, cytoskeleton and enzymes might interfere with several steps of platelet activation and impair platelet aggregation.This in vitro study shows that AcH has a major inhibitory action on platelet aggregation and may account for the prolonged ex vivo inhibition of aggregation observed in chronic alcoholics even in the absence of alcoholemia.


1984 ◽  
Vol 51 (01) ◽  
pp. 037-041 ◽  
Author(s):  
K M Weerasinghe ◽  
M F Scully ◽  
V V Kakkar

SummaryCollagen mediated platelet aggregation caused -5.6 ± 6.7% inhibition and +39.1 ± 15.2% potentiation of prekallikrein activation in plasma from normal healthy volunteers between 20–40 and 50–65 years of age, respectively (n = 15, p <0.01). The amouns of platelet factor-four (PF4) released in the two groups were not significantly different. Collagen treatment in the presence of indomethacin caused +11.5 ± 3.6% and +59.6 ± 19.5% potentiation in the 20–40 and 50–65 age groups respectively (p <0.02). Adrenaline mediated platelet aggregation caused -55.2 ± 7.1% and -35.2 ± 8.3% inhibition in the 20–40 and 50–65 age groups, respectively. Collagen treatment of platelet-deficient-plasma and platelet-rich-plasma in EDTA also caused potentiation of prekallikrein activation.The results indicate that the observed degree of prekallikrein activation after platelet aggregation is a net result of the inhibitory effect of PF4 and the potentiatory effect of activated platelets. The potentiatory effect was greater after collagen treatment as compared to adrenaline treatment, and in the 50–65 age group as compared to the 20–40 age group.


1978 ◽  
Vol 40 (02) ◽  
pp. 212-218 ◽  
Author(s):  
P Massini ◽  
R Käser-Glanzmann ◽  
E F Lüscher

SummaryThe increase of the cytoplasmic Ca-concentration plays a central role in the initiation of platelet activation. Four kinds of movements of Ca-ions are presumed to occur during this process: a) Ca-ions liberated from membranes induce the rapid shape change, b) Vesicular organelles release Ca-ions into the cytoplasm which initiate the release reaction, c) The storage organelles called dense bodies, secrete their contents including Ca-ions to the outside during the release reaction, d) At the same time a rearrangement of the plasma membrane occurs, resulting in an increase in its permeability for Ca-ions as well as in an increase in the number of Ca-binding sites.Since most processes occurring during platelet activation are reversible, the platelet must be equipped with a mechanism which removes Ca-ions from the cytoplasm. A vesicular fraction obtained from homogenized platelets indeed accumulates Ca actively. This Ca- pump is stimulated by cyclic AMP and protein kinase; it may be involved in the recovery of platelets after activation.It becomes increasingly clear that the various manifestations of platelet activation are triggered by a rise in the cytoplasmic Ca2+-concentration. The evidence for this and possible mechanisms involved are discussed in some detail in the contributions by Detwiler et al. and by Gerrard and White to this symposium. In this article we shall discuss four different types of mobilization of Ca-ions which occur in the course of the activation of platelets. In addition, at least one transport step involved in the removal of Ca2+ must occur during relaxation of activated platelets.


2002 ◽  
Vol 87 (05) ◽  
pp. 888-898 ◽  
Author(s):  
Stefania Gaino ◽  
Valeria Zuliani ◽  
Rosa Tommasoli ◽  
Donatella Benati ◽  
Riccardo Ortolani ◽  
...  

SummaryWe investigated similarities in the signaling pathways elicited by the F2 isoprostane 8-iso-PGF2α and by low doses of U46619 to induce platelet activation. Both 0.01-0.1 µmol/L U46619 and 0.01-1 µmol/L 8-isoPGF2α triggered shape change and filopodia extension, as well as adhesion to immobilized fibrinogen of washed platelets. At these doses the two platelet agonists failed to trigger secretion and aggregation, which were however induced by higher doses of U46619 (0.1-1 µmol/L). SB203580 (1-10 µmol/L), a specific inhibitor of the p38 mitogen activated protein (MAP) kinase blunted platelet shape change and adhesion induced by 0.05-1 µmol/L 8-iso-PGF2α and by 0.01 µmol/L U46619. These platelet responses were also inhibited by 20 µmol/L cytochalasin D, an inhibitor of actin polymerization, and 50 µmol/L piceatannol, an inhibitor of the Syk tyrosine kinases. Both 8-iso-PGF2α and U46619-induced p38 MAP kinase phosphorylation in suspended platelets and this was inhibited by piceatannol, indicating that Syk activation occurs upstream p38 MAP kinase phosphorylation. These findings suggest that the signaling pathway triggered by both 8-iso-PGF2α and low concentrations of U46619 to induce platelet adhesion and shape change implicates Syk, the p38 MAP kinase, and actin polymerization.


2018 ◽  
Vol 115 (11) ◽  
pp. 1672-1679 ◽  
Author(s):  
Qi Ma ◽  
Weilin Zhang ◽  
Chongzhuo Zhu ◽  
Junling Liu ◽  
Quan Chen

Abstract Aims AKT kinase is vital for regulating signal transduction in platelet aggregation. We previously found that mitochondrial protein FUNDC2 mediates phosphoinositide 3-kinase (PI3K)/phosphatidylinositol-3,4,5-trisphosphate (PIP3)-dependent AKT phosphorylation and regulates platelet apoptosis. The aim of this study was to evaluate the role of FUNDC2 in platelet activation and aggregation. Methods and results We demonstrated that FUNDC2 deficiency diminished platelet aggregation in response to a variety of agonists, including adenosine 5′-diphosphate (ADP), collagen, ristocetin/VWF, and thrombin. Consistently, in vivo assays of tail bleeding and thrombus formation showed that FUNDC2-knockout mice displayed deficiency in haemostasis and thrombosis. Mechanistically, FUNDC2 deficiency impairs the phosphorylation of AKT and downstream GSK-3β in a PI3K-dependent manner. Moreover, cGMP also plays an important role in FUNDC2/AKT-mediated platelet activation. This FUNDC2/AKT/GSK-3β/cGMP axis also regulates clot retraction of platelet-rich plasma. Conclusion FUNDC2 positively regulates platelet functions via AKT/GSK-3β/cGMP signalling pathways, which provides new insight for platelet-related diseases.


Sign in / Sign up

Export Citation Format

Share Document