scholarly journals A 6-Base Pair in Frame Germline Deletion in Exon 7 Of RET Leads to Increased RET Phosphorylation, ERK Activation, and MEN2A

2016 ◽  
Vol 101 (3) ◽  
pp. 1016-1022 ◽  
Author(s):  
S. Latteyer ◽  
L. Klein-Hitpass ◽  
C. Khandanpour ◽  
D. Zwanziger ◽  
T. D. Poeppel ◽  
...  

Abstract Context: Multiple endocrine neoplasia type 2 (MEN2) is usually caused by missense mutations in the proto-oncogene, RET. Objective: This study aimed to determine the mutation underlying MEN2A in a female patient diagnosed with bilateral pheochromocytoma at age 31 years and with medullary thyroid carcinoma (MTC) 6 years later. Methods: Leukocyte DNA was used for exome and Sanger sequencing. Wild-type (WT) RET and mutants were expressed in HEK293 cells. Activation of MAPK/ERK and PI3K/AKT was analyzed by Western blotting and luciferase assay. The effect of RET mutants on cell proliferation was tested in a colony forming assay. Results: Exome sequencing revealed a 6-nucleotide/2-amino acid in-frame deletion in exon 7 of RET (c.1512_1517delGGAGGG, p.505_506del). In vitro expression showed that phosphorylation of the crucial tyrosine 905 was much stronger in the p.505_506del RET mutant compared with WT RET, indicating ligand-independent autophosphorylation. Furthermore, the p.505_506del RET mutant induced a strong activation of the MAPK/ERK pathway and the PI3K/AKT pathway. Consequently, the p.505_506del RET mutant cells increased HEK293 colony formation 4-fold compared with WT RET. Conclusion: The finding of bilateral pheochromocytoma and MTC in our patient was highly suspicious of a RET mutation. Exome sequencing revealed a 6-base-pair deletion in exon 7 of RET, an exon not yet associated with MEN2. Increased ligand-independent phosphorylation of the p.505_506del RET mutant, increased activation of downstream pathways, and stimulation of cell proliferation demonstrated the pathogenic nature of the mutation. We therefore recommend screening the whole sequence of RET in MTC and pheochromocytoma patients with red flags for a genetic cause.

1996 ◽  
Vol 75 (04) ◽  
pp. 546-550 ◽  
Author(s):  
Marianne Schwartz ◽  
Albert Békássy ◽  
Mikael Donnér ◽  
Thomas Hertel ◽  
Stefan Hreidarson ◽  
...  

SummaryTwelve different mutations in the WASP gene were found in twelve unrelated families with Wiskott-Aldrich syndrome (WAS) or X-linked thrombocytopenia (XLT). Four frameshift, one splice, one nonsense mutation, and one 18-base-pair deletion were detected in seven patients with WAS. Only missense mutations were found in five patients diagnosed as having XLT. One of the nucleotide substitutions in exon 2 (codon 86) results in an Arg to Cys replacement. Two other nucleotide substitutions in this codon, R86L and R86H, have been reported previously, both giving rise to typical WAS symptoms, indicating a mutational hot spot in this codon. The finding of mutations in the WASP gene in both WAS and XLT gives further evidence of these syndromes being allelic. The relatively small size of the WASP gene facilitates the detection of mutations and a reliable diagnosis of both carriers and affected fetuses in families with WAS or XLT.


2019 ◽  
Vol 9 (7) ◽  
pp. 982-987
Author(s):  
Xiaoying Wang ◽  
Yanke Hao

Vascular smooth muscle cell (VSMC) abnormal proliferation is related to hypertension. P27 can arrest cell cycle and its downregulation is associated with hypertension. miR-155 plays a regulatory role in VSMC proliferation, while its relationship with hypertension is still unclear. Bioinformatics analysis reveals a relationship between p27 mRNA and miR-155. The present study explores miR-155's role in p27 expression, VSMC proliferation and apoptosis, as well as in the pathogenesis of hypertension. Dual luciferase assay verified the relationship between miR-155 and p27. miR155, p27, α-SMA, and Ki-67 expressions in the thoracic aorta media of rat hypertension model were detected. VSMCs were cultured in vitro and grouped into, anti-miR-NC, anti-miR-155, pIRES2-blank, pIRES2-p27, and anti-miR-155 + pIRES2-p27 groups followed by analysis of cell cycle by flow cytometry and cell proliferation by EdU staining. Hypertension rats were randomly divided into antagomir-155 and antagomir-control. Caudal artery systolic and diastolic pressures were measured. miR-155 suppressed p27 expression. miR-155 and Ki-67 expressions were significantly enhanced, while p27 and α-SMA levels were reduced in the tunica media from hypertension rats compared with control. Downregulation of miR-155 and/or upregulation of p27 obviously declined cell proliferation and arrested cell cycle in G1 phase. Antagomir-155 injection significantly decreased systolic and diastolic pressures, elevated p27 and α-SMA expressions in media, and reduced the thickness of tunica media. miR-155 enhances VSMC proliferation via regulating p27. miR-155 enhancement was related to hypertension. miR-155 plays a therapeutic effect in hypertension.


2017 ◽  
Vol 42 (4) ◽  
pp. 1670-1683 ◽  
Author(s):  
Yiran Si ◽  
Haiyang Zhang ◽  
Tao Ning ◽  
Ming Bai ◽  
Yi Wang ◽  
...  

Background/Aims: Abnormal expression of HGF is found in various cancers and correlates with tumor proliferation, metastasis and angiogenesis. However, the regulatory mechanism of the HGF-VEGF axis remains unclear. Methods: The expression characteristic of HGF in human gastric cancer tissues was shown by an immunohistochemistry assay, and the expression levels of target protein were detected by Western blot. The relative levels of miR-26a/b and target mRNA were examined by qRT-PCR. We used bioinformatics tools to search for miRNAs that can potentially target HGF. A luciferase assay was used to confirm direct targeting. Furthermore, the functions of miR-26a/b and HGF were evaluated by cell proliferation and migration assays in vitro and by the mouse xenograft tumor model in vivo. Results: We found that the HGF protein was clearly increased while miR-26a/b were dramatically down-regulated in gastric cancer. miR-26a/b directly bind to the 3’-UTR of HGF mRNA at specific targeting sites. We demonstrated that the repression of the HGF-VEGF pathway by miR-26a/b overexpression suppressed gastric cancer cell proliferation and migration. Furthermore, miR-26a/b also showed an anti-tumor effect in the xenograft mouse model by suppressing tumor growth and angiogenesis. Conclusions: miR-26a/b could suppress tumor tumorigenesis and angiogenesis by targeting the HGF-VEGF axis and could serve as a potential treatment modality for targeted therapy in the clinical treatment of gastric cancer.


2020 ◽  
Author(s):  
Yong Zhou ◽  
Jiqing Su ◽  
Mingsi Deng ◽  
Wei Zhang ◽  
Dongbiao Liu ◽  
...  

AbstractIntervertebral disc degeneration (IDD) refers to the abnormal response of cell-mediated progressive structural failure. In order to understand the molecular mechanism of the maintenance and destruction of the intervertebral disc, new IDD treatment methods are developed. Here, we first analyzed the key regulators of IDD through miRNA microarrays. The cell structure and morphology were discovered by Histological and radiographic. Then, the level of miR-31-5p was disclosed by qRT-PCR. The association between miR-31-5p and SDF-1/CXCR7 axis was discovered by 3’-Untranslated region (UTR) cloning and luciferase assay. The apoptosis of cells under different treatments was disclosed by Flow cytometer. The cell proliferation was discovered by EdU assay. Finally, the protein levels of SDF-1, CXCR7, ADAMTS-5, Col II, Aggrecan and MMP13 were discovered by Western blot. The results show that miR-31-5p is a key regulator of IDD and its level is down-regulated in IDD. Overexpression of miR-31-5p facilitates NP cell proliferation, inhibits apoptosis, facilitates ECM formation and inhibits the level of matrix degrading enzymes in NP cells. The SDF-1/CXCR7 axis is the direct target of miR-31-5p. miR-31-5p acts on IDD by regulating SDF-1/CXCR7. In vitro experiments further verified that the up-regulation of miR-31-5p prevented the development of IDD. In conclusion, overexpression of miR-31-5p can inhibit IDD by regulating SDF-1/CXCR7.HighlightsThe level of miR-31-5p decreased in NP;The increase in methylation status is consistent with the decrease in miR-31-5p levels;Upregulation of miR-31-5p stimulated NP cell proliferation, restrained apoptosis, promoted ECM;SDF-1/CXCR7 axis is the target of miR-31-5p;Overexpression of miR-31-5p inhibits IDD through SDF-1/CXCR7;In vitro experiments proved up-regulation of miR-31-5p prevented the development of IDD.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yanqin Huang ◽  
Tiffany Wu ◽  
Omar Perez ◽  
Amisha P. Rana ◽  
Liang Chen ◽  
...  

Ceftazidime/avibactam is an important treatment option for infections caused by Klebsiella pneumoniae carbapenemase-producing K. pneumoniae (KPC-Kp), however, resistance can emerge during treatment. The objective of the study was to define the ceftazidime/avibactam concentrations required to suppress bacterial regrowth in ceftazidime/avibactam susceptible isolates and identify active therapies against ceftazidime/avibactam-resistant KPC-Kp. Time-kill assays were performed against twelve ST258 KPC-Kp isolates that harbored blaKPC–2 or blaKPC–3. Nine KPC-Kp isolates (KPC-Kp 5A, 6A, 7A, 8A, 9A, 24A, 25A, 26A, and 27A) were susceptible to ceftazidime/avibactam, two (KPC-Kp 6B and 7B) were ceftazidime/avibactam resistant and meropenem susceptible, and one (KPC-Kp 1244) was resistant to both ceftazidime/avibactam and meropenem. Sequencing of the blaKPC genes revealed mutations in KPC-Kp 6B (D179Y substitution) and 7B (novel 21 base pair deletion) that both affected the Ω-loop encoding portion of the gene. Time-kill assays showed that against ceftazidime/avibactam-susceptible KPC-Kp, ceftazidime/avibactam concentrations ≥40/7.5 mg/L caused mean 5.42 log10CFU/mL killing and suppressed regrowth. However, regrowth occurred for some KPC-Kp isolates with a ceftazidime/avibactam concentration of 20/3.75 mg/L. Against ceftazidime/avibactam-resistant and meropenem-susceptible KPC-Kp 6B and 7B, bactericidal activity and synergy was observed for ceftazidime/avibactam in combination with meropenem ≤3.125 mg/L, while meropenem concentrations ≥50 mg/L were bactericidal as monotherapy. In contrast, clinically achievable concentrations of ceftazidime/avibactam were bactericidal against KPC-Kp 1244, which was ceftazidime/avibactam-resistant and meropenem-resistant due to outer membrane porin mutations and elevated blaKPC expression. Achieving high ceftazidime/avibactam concentrations may help to suppress bacterial regrowth in the presence of ceftazidime/avibactam. The optimal treatment approach for ceftazidime/avibactam-resistant KPC-Kp likely depends on the mechanism of resistance. Additional studies are warranted to confirm these findings.


BMC Cancer ◽  
2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Haiyan Liu ◽  
Yan Wu ◽  
Shunye Wang ◽  
Jie Jiang ◽  
Chenlu Zhang ◽  
...  

Abstract Background We aimed to investigate the correlation of Circ-SMARCA5 with disease severity and prognosis in multiple myeloma (MM), and its underlying mechanisms in regulating cell proliferation and apoptosis. Methods Bone marrow samples from 105 MM patients and 36 healthy controls were collected for Circ-SMARCA5 expression measurement. And the correlation of Circ-SMARCA5 expression with patients’ characteristics and survival was determined. In vitro, the effect of Circ-SMARCA5 on MM cell proliferation and apoptosis was evaluated by altering Circ-SMARCA5 expression through transfection. Rescue experiments and luciferase assay were further performed to explore the mechanism of Circ-SMARCA5 as well as its potential target miR-767-5p in regulating MM cell activity. Results Circ-AMARCA5 was downregulated in MM and presented a good value in distinguishing MM patients from controls and it was also negatively correlated with Beta-2-microglobulin (β2-MG) level and International Staging System (ISS) stage. Additionally, Circ-SMARCA5 high expression was associated with higher CR as well as better PFS and OS. As for in vitro experiments, Circ-SMARCA5 expression was lower in MM cell lines compared with normal cells, and Circ-SMARCA5 overexpression inhibited cell proliferation but promoted cell apoptosis in RPMI8226 cells. Rescue experiments disclosed that the effect of Circ-SMARCA5 on cell activity was attenuated by miR-767-5p, and luciferase reporter assay revealed direct binding between Circ-SMARCA5 and miR-767-5p. Conclusions Circ-SMARCA5 is downregulated and correlated with lower β2-MG level and ISS stage as well as better prognosis in MM patients, and it inhibits proliferation but promotes apoptosis of MM cells via directly sponging miR-767-5p.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shuhong Dai ◽  
Ning Li ◽  
Ming Zhou ◽  
Yue Yuan ◽  
Ding Yue ◽  
...  

AbstractThe treatment of patients with advanced-stage osteosarcoma represents a major challenge, with very few treatments currently approved. Although accumulating evidence has demonstrated the importance of lncRNAs in osteosarcoma, the current knowledge on the functional roles and molecular mechanisms of lncRNA endogenous born avirus-like nucleoprotein (EBLN3P) is limited. At present, the expressions of EBLN3P and miR-224-5p in osteosarcoma tissues were quantified by reverse transcription-quantitative PCR assay, and the expression of Ras-related protein 10 (Rab10) in osteosarcoma tissues was quantified by immunohistochemistry and western-blotting. The bioinformatics prediction software ENCORI was used to predict the putative binding sites of EBLN3P, Rab10 and miR-224-5p. The regulatory role of EBLN3P or miR-224-5p on cell proliferation, migration and invasion ability were verified by Cell Counting Kit-8, wound healing and Transwell assays, respectively. The interaction among EBLN3P, miR-224-5p and Rab10 were testified by luciferase. The increased expression of EBLN3P and Rab10 and decreased expression of miR-224-5p were observed in osteosarcoma tissues and cell lines. Besides, the overexpression of EBLN3P or knockdown of miR-224-5p were revealed to promote the proliferation, migration and invasion of osteosarcoma cells. Bioinformatics analysis and luciferase assay revealed that EBLN3P could directly interacted with miR-224-5p to attenuate miR-224-5p binding to the Rab10 3′-untranslated region. Furthermore, the mechanistic investigations revealed activation of the miR-224-5p/Rab10 regulatory loop by knockdown of miR‐372-3p or overexpression of Rab10, thereby confirming the in vitro role of EBLN3P in promoting osteosarcoma cell proliferation, migration and invasion. To the best of our knowledge, the present study is the first to demonstrate that EBLN3P may act as a competitive endogenous RNA to modulate Rab10 expression by competitive sponging to miR-224-5p, leading to the regulation of osteosarcoma progression, which indicates a possible new approach to osteosarcoma diagnosis and treatment.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii411-iii411
Author(s):  
Naveenkumar Perumal ◽  
Ranjana Kanchan ◽  
Pranita Atri ◽  
Ramakanth Venkata ◽  
Ishwor Thapa ◽  
...  

Abstract Medulloblastoma (MB), the most frequent malignant pediatric brain tumor is divided into four primary subgroups, i.e. wingless-type (WNT), sonic hedgehog (SHH), group 3, and group 4. Haploinsufficiency of chromosome 17p13.3 and c-myc amplification distinguish high-risk group 3 tumors and are associated with rapid recurrence and early mortality. We sought to identify the role of miR-212, which resides on chromosome 17p13.3, in the pathophysiology of group 3 medulloblastoma. RNA expression analyses revealed dramatically reduced levels of miR-212 in group 3 tumors and cell lines mainly through epigenetic silencing via histone modification (deacetylation). Restoring in vitro expression reduced tumor cell proliferation with decreased p-AKT and p-ERK levels, colony formation, migration and invasion in group 3 MB. Interestingly, a shift in differential c-myc phosphorylation (from serine-62 to threonine-58) was noted, resulting in reduced total c-myc levels, concurrent with elevated cellular apoptosis. In turn, pro-apoptotic binding partners of c-myc, i.e. Bin-1 and P19ARF, were upregulated in these cells. A dual luciferase assay confirmed direct targeting of miR-212 to NFIB, a nuclear transcription factor implicated in metastasis and recurrence. Concurrently, increased expression of NFIB was confirmed in group 3 MB tumors with poor survival in high NFIB-expressing patients. Transient NFIB silencing in vitro reduced tumor cell proliferation, migration and invasion, and medullosphere formation along with a reduction in stem cell markers (Nanog, Oct4, Sox2, CD133) and the multi-drug resistance maker, ABCG2. Taken together, these results substantiate the tumor suppressive role of miR-212 in group 3 medulloblastomas and provide a potential new therapeutic target, NFIB.


Author(s):  
Yong Zhou ◽  
Mingsi Deng ◽  
Jiqing Su ◽  
Wei Zhang ◽  
Dongbiao Liu ◽  
...  

Intervertebral disc degeneration (IDD) refers to the abnormal response of cell-mediated progressive structural failure. In order to understand the molecular mechanism of the maintenance and destruction of the intervertebral disc, new IDD treatment methods are developed. Here, we first analyzed the key regulators of IDD through microRNAs microarrays. Then, the level of miR-31-5p was evaluated by qRT-PCR. The association between miR-31-5p and Stromal cell-derived factor 1 (SDF-1)/CXCR7 axis was assessed by 3′-untranslated region (UTR) cloning and luciferase assay. The apoptosis of cells under different treatments was evaluated by flow cytometer. The cell proliferation was assessed by EdU assay. After IDD model establishment, the discs of mice tail were harvested for histological and radiographic evaluation in each group. Finally, the protein levels of SDF-1, CXCR7, ADAMTS-5, Col II, Aggrecan, and MMP13 were assessed by western blot. The results show that miR-31-5p is a key regulator of IDD and its level is down-regulated in IDD. Overexpression of miR-31-5p facilitates nucleus pulposus cell proliferation, inhibits apoptosis, facilitates ECM formation, and inhibits the level of matrix degrading enzymes in NP cells. The SDF-1/CXCR7 axis is the direct target of miR-31-5p. miR-31-5p acts on IDD by regulating SDF-1/CXCR7. In vitro experiments further verified that the up-regulation of miR-31-5p prevented the development of IDD. In conclusion, overexpression of miR-31-5p can inhibit IDD by regulating SDF-1/CXCR7.


2020 ◽  
Vol 19 ◽  
pp. 153303382095940
Author(s):  
Kui Li ◽  
Zheng Zhou ◽  
Ju Li ◽  
Rui Xiang

Oral squamous cell carcinoma (OSCC) represents more than 90% of all oral cancer and is the most common oral threat around the world. In this study, we examined the roles of miR-146b in OSCC cells. The miR-146b expression in OSCC tissues and cell lines was evaluated by quantitative real-time PCR (qRT-PCR). MTT assay was used to investigate the impact of miR-146b on the growth of OSCC cells in vitro. Transwell assay was utilized to analyze the effect of miR-146b on the migration and invasion of OSCC cells. Target prediction and luciferase assay were employed to demonstrate the interaction between miR-146b and HMG-Box Transcription Factor 1 (HBP1). Western blot was carried out to investigate the protein expressions of HBP1 related genes. miR-146b expression was significantly higher in OSCC tissues and cells compared with paired normal tissues and normal oral keratinocyte cells. Inhibition of miR-146b decreased cell proliferation, migration, and invasion of OSCC cells. Further studies found that HBP1 was a direct target of miR-146b. Co-inhibition of HBP1 reversed the suppressive impact of miR-146b inhibition on OSCC cell proliferation, migration, and invasion. In conclusion-ourresults reveal that miR-146b potentially regulates the proliferation, migration, and invasion of OSCC cells through binding and downregulating HBP1 expression in OSCC cells.


Sign in / Sign up

Export Citation Format

Share Document