Co-inheritance of the 20210A Allele of the Prothrombin Gene Increases the Risk of Thrombosis in Subjects with Familial Thrombophilia

1997 ◽  
Vol 78 (06) ◽  
pp. 1426-1429 ◽  
Author(s):  
M Makris ◽  
F E Preston ◽  
N J Beauchamp ◽  
P C Cooper ◽  
M E Daly ◽  
...  

SummaryThe presence of the 20210A allele of the prothrombin (PT) gene has recently been shown to be a risk factor for venous thromboembolism. This is probably mediated through increased plasma prothrombin levels. The aim of this study was to compare the prevalence of the prothrombin 20210A allele in control subjects and in subjects with recognised thrombophilia and to establish whether the additional inheritance of the PT 20210A allele is associated with an increased risk of venous thromboembolism. 101 subjects with a history of venous thromboembolism and diagnosed as having either factor V Leiden (R506Q) or heritable deficiencies of protein C, protein S or antithrombin were studied. The prevalence of the PT 20210A allele in this group was compared with the results obtained for 150 control subjects. In addition, the relationships were examined between genetic status and the number of documented thromboembolic episodes, and between plasma prothrombin levels and possession of the PT 20210A allele. 8 (7.9%) of the 101 patients were also heterozygous for the PT 20210A allele. This compares with 0.7% in the control subjects (p = 0.005). After exclusion of patients on warfarin, the mean plasma prothrombin of 113 subjects without 20210A was 1.09 U/ml, as compared with 1.32 U/ml in 8 with the allele (p = 0.0002). Among the 101 patients with either factor V Leiden, protein S deficiency, protein C deficiency or antithrombin deficiency, the age adjusted mean (SD) number of venous thromboembolic episodes at diagnosis was 3.7 (1.5) in those with the PT 20210A allele, as compared with 1.9 (1.1) in those without (p = 0.0001). We have demonstrated that the prevalence of the PT 20210A allele is significantly greater in subjects with venous thrombosis and characterised heritable thrombophilia than in normal control subjects and that the additional inheritance of PT 20210A is associated with an increased risk of venous thromboembolism. We have also confirmed that plasma prothrombin levels are significantly greater in subjects possessing the PT 20210A compared with those who do not.

2003 ◽  
Vol 90 (07) ◽  
pp. 17-26 ◽  
Author(s):  
Nicole Langlois ◽  
Philip Wells

SummaryClinical equipoise exists regarding whether relatives of individuals with venous thromboembolism (VTE) and thrombophilia should be screened for thrombophilia. There have been no systematic attempts to summarize studies that have assessed the incidence of VTE in relatives. The purpose of this review was to systematically identify and review observational studies with thrombophilic relatives and to summarize their findings with respect to their risk of VTE.We conducted a systematic literature review and included nine observational studies meeting a priori inclusion criteria. Potentially eligible studies evaluated VTE incidence in relatives of index patients (probands) with symptomatic thrombophilia. In the four prospective studies, the incidence of VTE for asymptomatic family members with factor V Leiden ranged from 0.58-0.67% per year, 1.0-2.5% for protein C deficiency, 0.7-2.2% for protein S deficiency, and 4% for antithrombin deficiency. About half of all VTEs occurred during well-known risk periods but incidence rates were decreased by use of prophylaxis. No deaths from pulmonary embolism or fatal hemorrhages from anticoagulants were reported. The incidence of VTE was generally lower in the retrospective studies. The pooled relative risk from four retrospective studies for factor V Leiden carriers was 3.69 (CI 2.27, 6.00) and from two studies the pooled relative risk for deficiencies of protein C, protein S, and antithrombin was 10.58 (CI 5.38, 20.81).In conclusion, the risk of VTE events in asymptomatic relatives is low, but this may be an underestimate. Anticoagulant prophylaxis during risk periods appears to be of benefit but further research in this area is required.


2009 ◽  
Vol 101 (01) ◽  
pp. 62-67 ◽  
Author(s):  
Carine Doggen ◽  
Hans Vos ◽  
Pieter Reitsma ◽  
Frits Rosendaal ◽  
Elisabeth Pomp

SummaryProtein C is an important inhibitor of blood coagulation. We investigated the effect of two polymorphisms within the promoter region of the protein C gene (C/T at position 2405 and A/G at position 2418) on risk of venous thrombosis and on plasma protein C levels. In addition the combined effect of the two polymorphisms with factor V Leiden and oral contraceptive use was investigated. Previous studies on these polymorphisms were small and were not able to investigate synergistic effects. In the Multiple Environmental and Genetic Assessment of risk factors for venous thrombosis (MEGA study), protein C levels were determined in 2,043 patients with venous thrombosis and 2,857 control subjects, and the two polymorphisms in 4,285 patients and 4,863 control subjects. The CC/GG genotype was associated with the lowest protein C levels. Compared to carriers of the TT/AA genotype – a genotype associated with higher protein C levels – the risk of venous thrombosis in CC/GG carriers was 1.3-fold increased (95% confidence interval 1.09–1.48). The combination of factor V Leiden with the CC/GG genotype led to a 4.7-fold increased risk, compared to non-carriers with the TT/AA genotype. Oral contraceptive use together with the CC/ GG genotype resulted in a 5.2-fold increased risk. In conclusion, the CC/GG genotype is associated with lower levels of protein C and an elevated risk of venous thrombosis compared to the TT/AA genotype. There is no clear synergistic effect of the CC/ GG genotype with factor V Leiden or oral contraceptive use on thrombotic risk.


2005 ◽  
Vol 93 (03) ◽  
pp. 600-604 ◽  
Author(s):  
Shannon Bates ◽  
Marilyn Johnston ◽  
Simon McRae ◽  
Jeffrey Ginsberg ◽  
Anne Grand’Maison

SummaryAbnormalities of the Protein C (PC) pathway are found in the majority of patients with thrombophilia. ProC Global is a coagulation assay that reflects the net effect of the PC pathway by measuring the activated partial thromboplastin time (APTT) of patient and control plasma, before and after activation of endogenous PC by Protac, a snake venom. Previous studies have suggested that abnormalities in this test are associated with an increased risk of venous thromboembolism (VTE). A retrospective analysis was performed using frozen plasma samples from 140 patients with confirmed VTE to determine whether an abnormal ProC Global result (in the presence and in the absence of known abnormalities in the PC pathway) is a predictor of initial and recurrent VTE. Patients were tested for the presence of activated protein C resistance, Factor V Leiden, PC and protein S (PS) deficiency, and non-specific inhibitor positivity. Mean ProC Global results were significantly lower in patients with recurrent VTE than in patients without recurrent VTE. The association between abnormal ProC Global result and recurrent VTE showed a strong trend, before (odds ratio, OR 3.6) and after (OR 3.1) exclusion of known thrombophilic abnormalities. Patients with a first episode of idiopathic VTE also expressed significant lower ProC Global results than those with secondary VTE. After exclusion of known PC pathway abnormalities, there was a statistically significant association between abnormal ProC Global and initial idiopathic VTE (p=0.04). These results suggest that ProC Global may serve as a predictor of recurrent VTE and potentially for first episode of idiopathic VTE. ProC Global may help identify patients at increased risk of initial and recurrent VTE.


1999 ◽  
Vol 82 (08) ◽  
pp. 662-666 ◽  
Author(s):  
Sandra J. Hasstedt ◽  
Mark F. Leppert ◽  
George L. Long ◽  
Edwin G. Bovill

IntroductionNearly 150 years ago, Virchow postulated that thrombosis was caused by changes in the flow of blood, the vessel wall, or the composition of blood. This concept created the foundation for subsequent investigation of hereditary and acquired hypercoagulable states. This review will focus on an example of the use of modern genetic epidemiologic analysis to evaluate the multigenic pathogenesis of the syndrome of juvenile thrombophilia.Juvenile thrombophilia has been observed clinically since the time of Virchow and is characterized by venous thrombosis onset at a young age, recurrent thrombosis, and a positive family history for thrombosis. The pathogenesis of juvenile thrombophilia remained obscure until the Egeberg observation, in 1965, of a four generation family with juvenile thrombophilia associated with a heterozygous antithrombin deficiency subsequently identified as antithrombin Oslo (G to A in the triplet coding for Ala 404).1,2 The association of a hereditary deficiency of antithrombin III with thrombosis appeared to support the hypothesis, first put forward by Astrup in 1958, of a thrombohemorrhagic balance.3 He postulated that there is a carefully controlled balance between clot formation and dissolution and that changes in conditions, such as Virchow’s widely encompassing triad, could tip the balance toward thrombus formation.The importance of the thrombohemorrhagic balance in hypercoagulable states has been born out of two lines of investigation: evidence supporting the tonic activation of the hemostatic mechanism and the subsequent description of additional families with antithrombin deficiency and other genetically abnormal hemostatic proteins associated with inherited thrombophilia. Assessing the activation of the hemostatic mechanism in vivo is achieved by a variety of measures, including assays for activation peptides generated by coagulation enzyme activity. Activation peptides, such as prothrombin fragment1+2, are measurable in normal individuals, due to tonic hemostatic activity and appear elevated in certain families with juvenile thrombophilia.4 In the past 25 years since Egeberg’s description of antithrombin deficiency, a number of seemingly monogenic, autosomal dominant, variably penetrant hereditary disorders have been well established as risk factors for venous thromboembolic disease. These disorders include protein C deficiency, protein S deficiency, antithrombin III deficiency, the presence of the factor V Leiden mutation, and the recently reported G20210A prothrombin polymorphism.5,6 These hereditary thrombophilic syndromes exhibit considerable variability in the severity of their clinical manifestations. A severe, life-threatening risk for thrombosis is conferred by homozygous protein C or protein S deficiency, which if left untreated, leads to death.7,8 Homozygous antithrombin III deficiency has not been reported but is also likely to be a lethal condition. Only a moderate risk for thrombosis is conferred by the homozygous state for factor V Leiden or the G20210A polymorphism.9,10 In contrast to homozygotes, the assessment of risk in heterozygotes, with these single gene disorders, has been complicated by variable clinical expression in family members with identical genotypes.11 Consideration of environmental interactions has not elucidated the variability of clinical expression. Consequently, it has been postulated that more than one genetic risk factor may co-segregate with a consequent cumulative or synergistic effect on thrombotic risk.12 A number of co-segregating risk factors have been described in the past few years. Probably the best characterized interactions are between the common factor V Leiden mutation, present in 3% to 6% of the Caucasian population,13,14 and the less common deficiencies of protein C, protein S, and antithrombin III. The factor V Leiden mutation does not, by itself, confer increased risk of thrombosis. The high prevalence of the mutation, however, creates ample opportunity for interaction with other risk factors when present.The G20210A prothrombin polymorphism has a prevalence of 1% to 2% in the Caucasian population and, thus, may play a similar role to factor V Leiden. A number of small studies have documented an interaction of G20210A with other risk factors.15-17 A limited evaluation of individuals with antithrombin III, protein C, or protein S deficiency revealed a frequency of 7.9% for the G20210A polymorphism, as compared to a frequency of 0.7% for controls.18 The G20210A polymorphism was observed in only 1 of the 6 protein C-deficient patients.18 In the present state, the elucidation of risk factors for venous thromboembolic disease attests to the effectiveness of the analytical framework constructed from the molecular components of Virchow’s triad, analyzed in the context of the thrombohemorrhagic balance hypothesis. Two investigative strategies have been used to study thromobophilia: clinical case-control studies and genetic epidemiologic studies. The latter strategy has gained considerable utility, based on the remarkable advances in molecular biology over the past two decades. Modern techniques of genetic analysis of families offer important opportunities to identify cosegregation of risk factors with disease.19 The essence of the genetic epidemiologic strategy is the association of clinical disease with alleles of specific genes. It is achieved either by the direct sequencing of candidate genes or by demonstration of linkage to genetic markers.


2009 ◽  
Vol 62 (1-2) ◽  
pp. 53-62 ◽  
Author(s):  
Gorana Mitic ◽  
Ljubica Povazan ◽  
Radmila Lazic ◽  
Dragan Spasic ◽  
Milana Maticki-Sekulic

Inherited thrombophilia can be defined as a predisposition to thrombosis caused by heritable defects, such as mutations in genes encoding the natural anticoagulants or clotting factors. Pregnancy related risk of VTE is sixfold increased comparing to non pregnant age matched women. Pregnancy is an independent risk factor for the development of venous thromboembolism and this risk is further increased by the presence of thrombophilia. Aim of the study: The aim of the study was to evaluate the association between deficiency of natural anticoagulants: antithrombin, protein C and protein S and pregnancy related thromboembolism. We have determined the activities of antithrombin, proten C and protein S in 74 women with pregnancy related thrombosis and in 45 healthy women who had at least two uncomplicated pregnancies. Among the women with the history of venous thromboembolism antithrombin deficiency was found in 4 (5.4%), protein C deficiency in 2 (2.7%) and protein S deficiency in 5 (6.76%). The total of 11 (14.6%) women was found to be deficient. Not a single woman in the control group was found to be deficient in natural anticoagulants. Deficiencies of coagulation inhibitors are associated with an increased risk of venous thrombosis during pregnancy and puerperium (p= 0.006). Antithrombin, protein C and protein S deficient women are at higher risk of developing venous thromboembolism during antepartal period (p= 0.0097). Prophylactic treatment with heparin should be recommended from the very beginning of the following pregnancy in women with antithrombin, protein C or protein S deficiency.


2021 ◽  
Vol 2021 ◽  
pp. 1-5
Author(s):  
Maria Khan ◽  
Chaudhry Altaf ◽  
Hamid Saeed Malik ◽  
Muhammad Abdul Naeem ◽  
Aamna Latif

Background. Venous thromboembolism (VTE) is referred to as formation of clots in a deep vein or lodging of thrombus towards the lungs which could be fatal yet preventable. The risk of developing VTE can be increased by various factors. Where there are innumerable acquired causes, the possibility of inherited thrombophilia cannot be ignored. In view of this, we have evaluated all patients with venous thromboembolism for inherited thrombophilia. Objective. To evaluate the frequencies of antithrombin (AT) deficiency, protein C and S deficiencies, Factor V Leiden, and prothrombin gene mutations in patients harboring venous thromboembolism. Materials and Methods. A study comprising of 880 patients who were presented with manifestations of venous thromboembolism was conducted from July 2016 to June 2017. A blood sample collected from patients was screened for thrombophilia defects encompassing AT, protein C and S deficiencies, Factor V Leiden, and prothrombin gene mutations. All acquired causes of thrombosis were excluded. Results. Of 880 patients who underwent screening for thrombophilia, 182 patients demonstrated VTE history. Their age ranged from 1 to 58 years. Males constituted a predominant group. About 45 (24.7%) patients had evidence of heritable thrombophilia. Of these, 20 (10.9%) had AT deficiency, 9 (4.9%) had Factor V Leiden mutation, 6 (3.2%) had protein C deficiency, whereas protein S deficiency and prothrombin gene mutation both were found in 5 (2.7%) patients. Conclusion. Our study illustrated the highest frequency of antithrombin deficiency among other investigated thrombophilia defects.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2318-2318
Author(s):  
Junghyun Park ◽  
Marc Rodger

Introduction Thrombophilia testing in unprovoked venous thromboembolism patients (VTE) is controversial. Common thrombophilias such as Factor V Leiden or prothrombin gene variant appear to not importantly increase the risk of VTE recurrence, and thus are not considered in anticoagulation management decisions. However, patients with potent thrombophilias such as antiphospholipid antibodies (APLA), antithrombin deficiency, protein C and S deficiency, and homozygous genetic thrombophilias or combined defects are at higher risk of recurrence and it is recommended that they receive long-term anticoagulation. If the proportion of patients with "potent" thrombophilia is high then thrombophilia testing should be conducted. We sought to determine the proportion of unprovoked VTE patients with "potent" thrombophilia. Methods All patients with managed in our oral anticoagulation management system in the period from 1998 to 2015 were potentially eligible for the study. Inclusion criteria were: 1) symptomatic, objectively confirmed VTE unprovoked proximal deep vein thrombosis or pulmonary embolism. Exclusion criteria were: 1) cancer or myeloproliferative disease at the time of VTE diagnosis; 2) no cast, surgery, trauma or immobilization (>3 days in bed 90% of waking hours) in the 90 days prior to diagnosis. We selected unprovoked VTE patients diagnosed between 2002 and 2010, as thrombophilia testing was relatively universal and available in our electronic system in that time frame (N=1344). We then selected a convenience sample of N=1165. The primary outcome measure was the proportion of patients with "potent" thrombophilia (potent= homozygous Factor V Leiden, homozygous Prothrombin gene variant, APLA, protein C, protein S or anti-thrombin deficiency or combined deficiencies). Results In 1165 patients with unprovoked VTE, complete screening was done in 470 patients (40.34%) and 976 (83.78%) had at least one thrombophilia test. Complete thrombophilia testing was defined as a screen including testing for factor V Leiden, prothrombin gene defect, APLA, anti-thrombin deficiency, protein C, and protein S. Potent thrombophilias were demonstrated in 103/1165 patients (8.84%; 95% CI, 7.34 to 10.61) (Table 2) in the total study population, and 103/976 (10.55%; 95% CI, 9.62-14.47) in patients with at least one thrombophilia test. Conclusion The proportion of unprovoked VTE patients with "potent" thrombophilia is high. Given a high proportion of "potent' thrombophilia patients who likely benefit from indefinite anticoagulation, complete thrombophilia testing appears warranted in patients with unprovoked VTE in whom anticoagulants maybe discontinued. Thrombophilia testing is warranted for a selected group of patients to detect high-risk thrombophilias that could impact anticoagulation management. Table 1. Thrombophilia screening Complete screening 470 (40.3%) No screening 189 (16.2%) At least one thrombophilia test 976 (83.8%) Table 2. Thrombophilia All patients (n=1165) Tested for individual thrombophilia % 95% CI % 95% CI FVL Heterozygous 162/1165 (13.9%) 12.0-16.0% 162/883 (18.4%) 15.9-21.0% FVL Homozygous 4/1165 (0.3%) 0.1-0.9% 4/883 (0.5%) 0.2-1.2% Prothrombin Heterozygous 63/1165 (5.4%) 4.3-6.9% 63/831 (7.6%) 6.0-9.6% Prothrombin Homozygous 1/1165 (0.0%) 0.0-0.5% 1/831 (0.1%) 0.0-0.7% Antithrombin deficiency 10/1165 (0.9%) 0.5-1.6% 10/815 (1.2%) 0.7-2.2% Protein C deficiency 18/1165 (1.6%) 1.0-2.4% 18/639 (2.8%) 1.8-4.4% Protein S deficiency 13/1165 (1.1%) 0.7-1.9% 13/635 (2.1%) 1.2-3.5% Lupus anticoagulant 24/1165 (2.1%) 1.4-3.1% 24/849 (2.8%) 1.9-4.2% Anticardiolipin IgM 16/1165 (1.4%) 0.9-2.2% 16/886 (1.8%) 1.1-2.9% Anticardiolipin IgG 20/1165 (1.7%) 1.1-2.6% 20/885 (2.2%) 1.5-3.5% β-2 microglobulin IgM 10/1165 (0.9%) 0.5-1.6% 10/333 (3.0%) 1.6-5.4% β-2 microglobulin IgG 8/1165 (0.7%) 0.4-1.4% 8/333 (2.4%) 1.2-4.7% Homocysteine 50/1165 (5.7%) 4.3-7.4% 50/668 (7.5%) 5.7-9.7% Factor VIII elevated 11/1165 (0.9%) 0.5-1.7% 11/646 (1.7%) 1.0-3.0% At least one or more of the above 331/1165 (28.4%) 25.9-31.1% 331/976 (33.9%) 31.0-36.9% Potent thrombophilia 103/1165 (8.8%) 7.34-10.6% 103/976 (10.6%) 9.6-14.5% Figure 1. Figure 1. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
1999 ◽  
Vol 94 (9) ◽  
pp. 3062-3066 ◽  
Author(s):  
E.M. Faioni ◽  
F. Franchi ◽  
P. Bucciarelli ◽  
M. Margaglione ◽  
V. De Stefano ◽  
...  

With the aim of establishing whether the HR2 haplotype in factor V affects the risk of venous thromboembolism, a retrospective multicenter cohort study was performed in 810 family members identified through 174 probands who suffered from at least 1 episode of deep vein thrombosis and/or pulmonary embolism and had an inherited defect associated with thrombophilia (antithrombin, protein C, or protein S deficiency; factor V R506Q or prothrombin G20210A). Fifty-eight percent (468/810) of the family members had an inherited defect and 10% (47/468) were symptomatic. The HR2 haplotype was found in association with factor V R506Q more frequently in family members with venous thromboembolism (18%) than in those without (8%). Double heterozygosity for factor V R506Q and HR2 conferred a 3- to 4-fold increase in the relative risk of venous thromboembolism compared with factor V R506Q alone. The median age at first event was lower when the 2 defects were associated (46v 52 years). No increase in risk of venous thromboembolism could be demonstrated when the HR2 haplotype was associated with inherited thrombophilic defects other than factor V R506Q. Because both factor V R506Q and the HR2 haplotype are very frequent, the effect of their coinheritance on the risk of venous thromboembolism might represent a clinically relevant issue, and screening for HR2 in carriers of factor V R506Q should be considered.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Alhossain A. Khalafallah ◽  
Abdul-Rauf O. Ibraheem ◽  
Qiong Yue Teo ◽  
Abdul-Majeed AlBarzan ◽  
Ramanathan Parameswaran ◽  
...  

Pregnancy is a hypercoagulable state associated with an increased risk of venous thromboembolic disease (VTE). We retrospectively studied 38 Caucasian pregnant women with thrombophilia risk and compared their obstetric outcomes with a matched cohort without known thrombophilia risk during the period between January 2007 and December 2010. There were (2) cases with factor V Leiden, (6) prothrombin gene mutation, (1) antithrombin III deficiency, (2) protein C deficiency, (3) protein S deficiency, (10) MTHFR mutation, (7) anti-cardiolipin antibodies, and (1) lupus anticoagulant. Patients without thrombophilia who presented with recurrent unprovoked VTE were considered as high risk (6 cases). Most patients received anticoagulation (34/38) with aspirin only (6), enoxaparin (27), and warfarin (1). Twenty-six out of thirty-eight pregnant women (68.4%) with an increased risk of thrombophilia experienced one or more obstetric complications defined as hypertension, preeclampsia, placenta abruptio, VTE, and oligohydramnios, compared with 15 out of 40 (37.5%) pregnant women in the control group (OR 3.6; 95% CI 1.42, 9.21, P<0.001). The incidence of obstetric complications was significantly higher in the thrombophilia group compared to the controls. However, these complications were the lowest among patients who received full-dose anticoagulation. Our study suggests that strict application of anticoagulation therapy for thrombophilia of pregnancy is associated with an improved pregnancy outcome. The study was registered in the Australian and New Zealand Clinical Trials Registry under ACTRN12612001094864.


Sign in / Sign up

Export Citation Format

Share Document