The Effects of Citrate and Extracellular Calcium Ions on the Platelet Release Reaction Induced by Adenosine Diphosphate and Collagen

1979 ◽  
Vol 42 (02) ◽  
pp. 778-793 ◽  
Author(s):  
Stanley Hepinstall ◽  
Patricia M Taylor

SummaryThe ADP-induced release of 3H-serotonin from human platelets in heparinized platelet rich plasma is markedly stimulated by the addition of sodium citrate. The aggregation and release that is induced by collagen is less affected by citrate. Data is presented that supports the view that the effects of citrate on both ADP-and collagen-induced release are largely via alteration of the concentration of ionized calcium in plasma.Collagen can induce release of 3H-serotonin via extracellular calcium-independent and -dependent mechanisms. The possibility that the calcium-dependent mechanism is aggregation-dependent and that the calcium is required for platelet aggregation rather than directly involved in the release reaction is discussed.

Blood ◽  
1978 ◽  
Vol 52 (3) ◽  
pp. 524-531 ◽  
Author(s):  
A Weiss ◽  
NL Baenziger ◽  
JP Atkinson

Abstract Enchanced cAMP concentrations inhibit the aggregation and release reaction of isolated human platelets and platelet-rich plasma to all known inducing agents. An opposing role for cGMP in this phenomenon has been proposed by some but not by others, and the function of cGMP in this secretory process is unclear. To further elucidate the role of cGMP in the release reaction, the effect of increased concentrations of this cyclic nucleotide on 14C-serotonin release was evaluated utilizing isolated human platelets and highly purified human thrombin or commercially available bovine thrombin. Several recently described stimulators of guanylate cyclase, including sodium nitroprusside, sodium azide, nitrosoquanidines, and ascorbic acid, were found to markedly augment platelet cGMP levels. Enhanced platelet cGMP concentrations produced by these drugs or by the exogenous addition of cGMP and its analogues neither caused these cells to secrete nor modulated the thrombin-induced serotonin release reaction. The inhibition of serotonin release by increased cAMP concentrations was not counteracted by increased cGMP levels. Platelet cGMP concentrations were unaltered by thrombin. These data indicate that cGMP is not an obligatory signal or a modulator of the thrombin-induced platelet release reaction.


1975 ◽  
Vol 228 (6) ◽  
pp. 1757-1765 ◽  
Author(s):  
JF Mustard ◽  
DW Perry ◽  
RL Kinlough-Rathbone ◽  
MA Packham

Extensive aggregation of human platelets can be induced by ADP without secondaryaggregation or release of granule contents. This occurs with washed platelets in Tyrode solution containing 0.35% albumin, human fibrinogen, and apyrase, and in platelet-rich, heparin- or hirudin-plasma. Conditions that caused release during ADP-inducedaggregation were-citrate as the anticoagulant in platelet-rich plasma; addition of citrate (11-15 mM) to a suspension of washed platelets, or to hirudin-plasma or heparin-plasma; suspension of platelets in a medium containing magnesium but no calcium;and the presence of trace amounts of thrombin or aggregated gamma globulin in the platelet suspensions. Acetylsalicylic acid, phenylbutazone, or sulfinpyrazone inhibited secondary aggregation and release in all these circumstances. Heparin or hirudin inhibited ADP-INDUCED SECONDARY AGGREGATION AND RELEASE PROMOTED BY TRACES OF THROMBIN. Although fibrinogen is required for ADP-induced primary aggregation, it does not support secondary aggregation and release, provided that it has no clot-promoting activity. The main agent responsible for ADP-induced secondary aggregation and release in human, citrated, platelet-rich plasma appears to be sodium citrate. Suspending washed human platelets in a medium without calcium mimics the effect of citrate.


1975 ◽  
Author(s):  
O. Tangen ◽  
S. Bygdeman

The effect of some selected inhibitors of platelet release reaction and blood clotting on collagen- and adrenaline-induced human platelet aggregation was investigated by means of the turbidimetric method according to Born. Acetylsalicylic acid (ASA) inhibited both collagen- and adrenaline-induced platelet aggregation in citrated platelet rich plasma (PRP). Addition of sufficient amounts of Ca++ to give concentrations similar to those in native blood suppressed the inhibition by small doses of ASA (5–10 μg/ml) on collagen-induced aggregation and the second phase of adrenaline-induced aggregation. Higher concentrations of ASA (13–30 μg/ml) could partly overcome this effect of Ca++. Heparin, which had no effect on primary adenosine diphosphate (ADP)-induced aggregation, inhibited platelet aggregation induced by collagen. In contrast, both the first and second phase of adrenaline-induced aggregation was markedly potentiated by heparin. Dextran sulphate had effects basically similar to heparin, Nicotinic acid inhibited collagen-induced aggregation, but had no effect on the second phase of adrenaline-induced aggregation. These results indicate that the platelet release reaction induced by collagen and adrenaline is mediated via separate receptors or reaction pathways.


Blood ◽  
1978 ◽  
Vol 52 (3) ◽  
pp. 524-531
Author(s):  
A Weiss ◽  
NL Baenziger ◽  
JP Atkinson

Enchanced cAMP concentrations inhibit the aggregation and release reaction of isolated human platelets and platelet-rich plasma to all known inducing agents. An opposing role for cGMP in this phenomenon has been proposed by some but not by others, and the function of cGMP in this secretory process is unclear. To further elucidate the role of cGMP in the release reaction, the effect of increased concentrations of this cyclic nucleotide on 14C-serotonin release was evaluated utilizing isolated human platelets and highly purified human thrombin or commercially available bovine thrombin. Several recently described stimulators of guanylate cyclase, including sodium nitroprusside, sodium azide, nitrosoquanidines, and ascorbic acid, were found to markedly augment platelet cGMP levels. Enhanced platelet cGMP concentrations produced by these drugs or by the exogenous addition of cGMP and its analogues neither caused these cells to secrete nor modulated the thrombin-induced serotonin release reaction. The inhibition of serotonin release by increased cAMP concentrations was not counteracted by increased cGMP levels. Platelet cGMP concentrations were unaltered by thrombin. These data indicate that cGMP is not an obligatory signal or a modulator of the thrombin-induced platelet release reaction.


1973 ◽  
Vol 30 (03) ◽  
pp. 494-498 ◽  
Author(s):  
G de Gaetano ◽  
J Vermylen

SummaryThrombelastograms of both native blood and re-calcified platelet-rich plasma samples taken from subjects given a single oral dose of aspirin (1 gram) were not significantly different from the pretreatment recordings. Aspirin also did not modify the thrombelastogram when preincubated in vitro with platelet-rich plasma at concentrations inhibiting the platelet “release reaction” by collagen. Thrombelastography therefore cannot evaluate the effect of aspirin on platelet function.


1976 ◽  
Vol 36 (02) ◽  
pp. 411-423 ◽  
Author(s):  
Nicholas Lekas ◽  
J. C Rosenberg

SummaryHuman platelets labeled with 51Cr were used to determine the contribution made by platelet lysis to the platelet release reaction and platelet aggregation induced by rabbit antihuman platelet serum (APS) and equine antihuman thymocyte globulin (ATG). Platelets were tested in both plasma (PRP) and non-plasma containing media. Antibodies directed against platelets, either as APS or ATG, induced significant amounts of platelet release and aggregation, as well as some degree of lysis, in the absence of complement. The presence of complement increased platelet lysis and aggregation, but not the release reaction. Non-immune horse gamma globulin produced different responses depending upon whether platelets were investigated in PRP or non-plasma containing media. Aggregation was seen in the latter but not the former. These differences can be explained by the presence of plasma components which prevent non-specific immune complexes from causing platelet aggregation. Since platelets in vivo are always in a plasma medium, one must be wary of utilizing data from platelet studies in synthetic plasma-free media as the basis of explaining clinical events. These observations demonstrate at least two, and possibly three, different mechanisms whereby ATG could activate platelets causing thrombotic complications and thrombocytopenia, i.e., via 1) specific and, 2) non-specific non-lytic pathways and 3) a lytic pathway.


2003 ◽  
Vol 89 (02) ◽  
pp. 340-347 ◽  
Author(s):  
Monica Bari ◽  
Domenico Del Principe ◽  
Alessandro Finazzi-Agrò ◽  
Mauro Maccarrone

SummaryThe endocannabinoid 2-arachidonoylglycerol (2-AG) has been shown to activate human platelets in platelet-rich plasma, by binding to a “platelet-type” cannabinoid receptor (CBPT). Here, washed human platelets were used to characterize the binding of [3H]2-AG to CBPT, showing a dissociation constant (Kd) of 140 ± 31 nM and a maximum binding (Bmax) of 122 ± 10 pmol.mg protein-1. Selective antagonists of both CB1 and CB2 cannabinoid receptors inhibited this binding, which was enhanced up to ~230% over the controls by 1 µM serotonin (5-hydroxytryptamine, 5-HT). Human platelets were also able to bind [3H]5-HT (Kd = 79 ± 17 nM, Bmax = 14.6 ± 1.3 pmol.mg protein-1), and 1 µM 2-AG enhanced this binding up to ~150%. Moreover, they were able to take up [3H]5-HT through a high affinity transporter (Michaelis-Menten constant = 22 ± 2 nM, maximum velocity = 344 ± 15 pmol.min-1.mg protein-1), which was not affected by 2-AG. Interestingly, 5-HT did not affect the activity of the 2-AG transporter of human platelets. Treatment of washed platelets with 1 µM 2-AG led to increased intracellular inositol-1,4,5-trisphosphate (up to ~300%) and decreased cyclic AMP (down to ~50%). Furthermore, treatment of pre-loaded platelets with 1 µM 2-AG induced a ~300% increase in [3H]2-AG release, according to a CBPT-dependent mechanism. Also, 1 µM 5-HT enhanced the effect of 2-AG on inositol-1,4,5-trisphosphate (~500% of the controls), cyclic AMP (~20%) and [3H]2-AG release (~570%), and the latter process was shown to be partly (~50%) involved in the 5-HT-dependent platelet activation. Taken together, reported findings represent the first demonstration that 2-AG and 5-HT can mutually reinforce their receptor binding on platelet surface, which might have therapeutic implications.


1981 ◽  
Author(s):  
K Fujimura ◽  
S Maehama ◽  
A Kuramoto

The analysis of platelet membrane glycoproteins and platelet functions was conducted to disclose the role of GPI and V in the thrombin activation of platelet. Our previous study proved that native and HNB thrombin hydrolyzed GPV(M. W.8-9 × 104) selectively and released new glycoprotein fragment (M.W. 6.2-6.8 × 104 ) of GPV, resulting in the development of 14C-5HT release reaction and platelet MDA production. But DIP thrombin could not induce these phenomena.Membrane surface proteins of intact platelets were labeled with Na[3H]BH4 by neuraminidase and galactose oxidase method and analyzed by fluorography after SDS-PAGE.The high molecular weight glycoproteins, GPI, GPIII and GPV were diminished by trypsin treatment in correlation with the concentration and incubation time. In correspond to the diminution of these membrane glycoproteins, platelet release reaction was increased .Chymotrypsin treatment in various concentrations, release reaction and MDA production were not induced in spite of long incubation times. But the ristocetin aggregation was decreased in Chymotrypsin treated platelets whose membrane glycoproteins did not change significantly. The Chymotrypsin treated platelets whose GPI was modified functionally, showed normal release reaction and MDA production by thrombin stimulation. On the other hand, the thrombin treated platelets in low concentration previously whose GPV was hydrolyzed partially, demonstrated little release reaction and MDA production by thrombin or trypsin stimulation. From these results, the GPV was hydrolyzed specifically by thrombin and nonspecifically by trypsin but was not hydrolyzed by Chymotrypsin. It was concluded that the thrombin binds to the GPI and hydrolyzed GPV specifically, and hydrolysis of GPV might act as a signal to induce the platelet release reaction and prostaglandin metabolism.


Blood ◽  
1987 ◽  
Vol 70 (1) ◽  
pp. 221-226 ◽  
Author(s):  
M Cattaneo ◽  
RL Kinlough-Rathbone ◽  
A Lecchi ◽  
C Bevilacqua ◽  
MA Packham ◽  
...  

Abstract Platelets from two afibrinogenemic patients were used to determine whether fibrinogen is essential for platelet aggregation and to examine whether released fibrinogen contributes to the stabilization of platelet aggregates when platelets have been induced to aggregate and release their granule contents by stimulation with thrombin. The addition of adenosine diphosphate (ADP) to platelet-rich plasma (PRP) or to suspensions of washed platelets from the afibrinogenemic patients caused the formation of small aggregates, which was either not inhibited or only slightly inhibited by the F(ab')2 fragments of an antibody to fibrinogen but was inhibited by an antibody (10E5) to glycoprotein IIb/IIIa. Thus there is a component of ADP-induced platelet aggregation that is not dependent on fibrinogen or other plasma proteins but is dependent on glycoprotein IIb/IIIa. There was little difference in the extent of aggregation and the release of granule contents of normal and afibrinogenemic platelets in response to the release-inducing agents collagen, platelet-activating factor (PAF), sodium arachidonate, or thrombin. With normal or afibrinogenemic platelets, aggregation by thrombin (0.2 U/mL or higher) was not inhibited by the F(ab')2 fragments of an antibody to human fibrinogen. Deaggregation by combinations of inhibitors of platelets aggregated by 1 U/mL thrombin showed no difference between platelets from afibrinogenemic and control subjects, indicating that released fibrinogen does not make a major contribution to the stabilization of platelet aggregates formed by thrombin stimulation.


1979 ◽  
Author(s):  
E. Hattey ◽  
B.R. Binder

To study the effect of pH and platelet counts on thrombin induced platelet release reaction, washed human platelets labeled with 14C-serotonin were suspended in phosphate buffered saline of varying pH values for 15 minutes with thrombin concentrations between 1,1 and 0,068 NIH U/ml of suspension. The amount of serotonin released caused by the thrombin added was dependent on the pH of the incubation medium with an optimum in the range of pH 7,4 -7,6. This effect was more marked with higher thrombin concentrations. The serotonin release controles without thrombin were not influenced by the different pH values and were always less than 10%. The amount of platelets in the reaction mixture influenced the release values not significantly at thrombin concentrations of 1,1 and 0,27 NIH U/ml While with 0,068 NIH U/ml a significant dependence of the release on the number of platelets was observed, resulting in higher release values in platelet mixtures with lower platelet counts.Therefore it can be concluded that the pH is of major influence on the release reaction especially at high thrombin concentrations while the platelet count is of importance only at low thrombin concentrations.


Sign in / Sign up

Export Citation Format

Share Document