scholarly journals Effect of the Air Filtration System Replacement on Embryo Quality in the Assisted Reproduction Laboratory

Author(s):  
Karine Poletto ◽  
Yanna de Lima ◽  
Mário Approbato

AbstractImproving infrastructural conditions of the in vitro fertilization laboratory, such as the air quality, has profound positive effects on embryo culture. Poor environmental conditions reduce the rate of embryo formation and, therefore, of pregnancy. This review article presents important publications regarding the impact of air quality in human reproduction laboratories on embryo quality, pregnancy success, and live births. The studies demonstrate that the replacing the air filtration system improves significantly the environmental air quality, and, consequently, improves laboratory parameters, such as the fertilization rate, the number of blastocysts, the embryo implantation rate, and the number of live births. On the other hand, improving air quality decreases the number of abortions. Therefore, environmental parameters that improve embryo quality and increase healthy child birth rates must be the main targets for the assisted reproduction laboratory quality control.

Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1414
Author(s):  
Josep M. Cambra ◽  
Emilio A. Martinez ◽  
Heriberto Rodriguez-Martinez ◽  
Maria A. Gil ◽  
Cristina Cuello

The development of chemically defined media is a growing trend in in vitro embryo production (IVP). Recently, traditional undefined culture medium with bovine serum albumin (BSA) has been successfully replaced by a chemically defined medium using substances with embryotrophic properties such as platelet factor 4 (PF4). Although the use of this medium sustains IVP, the impact of defined media on the embryonic transcriptome has not been fully elucidated. This study analyzed the transcriptome of porcine IVP blastocysts, cultured in defined (PF4 group) and undefined media (BSA group) by microarrays. In vivo-derived blastocysts (IVV group) were used as a standard of maximum embryo quality. The results showed no differentially expressed genes (DEG) between the PF4 and BSA groups. However, a total of 2780 and 2577 DEGs were detected when comparing the PF4 or the BSA group with the IVV group, respectively. Most of these genes were common in both in vitro groups (2132) and present in some enriched pathways, such as cell cycle, lysosome and/or metabolic pathways. These results show that IVP conditions strongly affect embryo transcriptome and that the defined culture medium with PF4 is a guaranteed replacement for traditional culture with BSA.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ritwik Nigam ◽  
Kanvi Pandya ◽  
Alvarinho J. Luis ◽  
Raja Sengupta ◽  
Mahender Kotha

AbstractOn January 30, 2020, India recorded its first COVID-19 positive case in Kerala, which was followed by a nationwide lockdown extended in four different phases from 25th March to 31st May, 2020, and an unlock period thereafter. The lockdown has led to colossal economic loss to India; however, it has come as a respite to the environment. Utilizing the air quality index (AQI) data recorded during this adverse time, the present study is undertaken to assess the impact of lockdown on the air quality of Ankleshwar and Vapi, Gujarat, India. The AQI data obtained from the Central Pollution Control Board was assessed for four lockdown phases. We compared air quality data for the unlock phase with a coinciding period in 2019 to determine the changes in pollutant concentrations during the lockdown, analyzing daily AQI data for six pollutants (PM10, PM2.5, CO, NO2, O3, and SO2). A meta-analysis of continuous data was performed to determine the mean and standard deviation of each lockdown phase, and their differences were computed in percentage in comparison to 2019; along with the linear correlation analysis and linear regression analysis to determine the relationship among the air pollutants and their trend for the lockdown days. The results revealed different patterns of gradual to a rapid reduction in most of the pollutant concentrations (PM10, PM2.5, CO, SO2), and an increment in ozone concentration was observed due to a drastic reduction in NO2 by 80.18%. Later, increases in other pollutants were also observed as the restrictions were eased during phase-4 and unlock 1. The comparison between the two cities found that factors like distance from the Arabian coast and different industrial setups played a vital role in different emission trends.


2020 ◽  
Vol 21 (4) ◽  
pp. 1303 ◽  
Author(s):  
Stefan Bauersachs ◽  
Pascal Mermillod ◽  
Carmen Almiñana

Oviductal extracellular vesicles (oEVs) are emerging as key players in the gamete/embryo–oviduct interactions that contribute to successful pregnancy. Various positive effects of oEVs on gametes and early embryos have been found in vitro. To determine whether these effects are associated with changes of embryonic gene expression, the transcriptomes of embryos supplemented with bovine fresh (FeEVs) or frozen (FoEVs) oEVs during in vitro culture compared to controls without oEVs were analyzed by low-input RNA sequencing. Analysis of RNA-seq data revealed 221 differentially expressed genes (DEGs) between FoEV treatment and control, 67 DEGs for FeEV and FoEV treatments, and minor differences between FeEV treatment and control (28 DEGs). An integrative analysis of mRNAs and miRNAs contained in oEVs obtained in a previous study with embryonic mRNA alterations pointed to direct effects of oEV cargo on embryos (1) by increasing the concentration of delivered transcripts; (2) by translating delivered mRNAs to proteins that regulate embryonic gene expression; and (3) by oEV-derived miRNAs which downregulate embryonic mRNAs or modify gene expression in other ways. Our study provided the first high-throughput analysis of the embryonic transcriptome regulated by oEVs, increasing our knowledge on the impact of oEVs on the embryo and revealing the oEV RNA components that potentially regulate embryonic development.


Author(s):  
Alessio Suman ◽  
Mirko Morini ◽  
Rainer Kurz ◽  
Nicola Aldi ◽  
Klaus Brun ◽  
...  

The quality and purity of the air entering a gas turbine is a significant factor influencing its performance and life. Foulants in the ppm range which are not captured by the air filtration system usually cause deposits on blading, which results in a severe drop in the performance of the compressor. Through the interdisciplinary approach proposed in this paper, it is possible to determine the evolution of the fouling phenomenon through the integration of studies in different research fields: (i) numerical simulation, (ii) power plant characteristics, and (iii) particle-adhesion characteristics. In fact, the size of the particles, their concentrations and adhesion ability, and filtration efficiency represent the major contributors for performing a realistic quantitative analysis of fouling phenomena in an axial compressor. The aim of this work is the estimation of actual deposits on the blade surface in terms of location and quantity. This study combines the impact/adhesion characteristic of the particles obtained through a computational fluid dynamic (CFD) and the real size distribution of the contaminants in the air swallowed by the compressor. The blade zones affected by deposits are clearly reported by using easy-to-use contaminant maps realized on the blade surface, in terms of contaminant mass. The analysis has shown that particular fluid-dynamic phenomena and airfoil shape influence the pattern deposition. The use of a filtration system decreases the contamination of blade and the charge level of electrostatic filters seems to be less important than the air contaminant concentration. From these analyses, some guidelines for proper installation and management of the power plant (in terms of filtration systems and washing strategies) can be drawn up. Characterization of the air contaminants in the power plant location represents the most important step in improving the management of the gas turbine power plant.


Author(s):  
Alessio Suman ◽  
Mirko Morini ◽  
Rainer Kurz ◽  
Nicola Aldi ◽  
Klaus Brun ◽  
...  

The quality and purity of the air entering a gas turbine is a significant factor influencing its performance and life. Foulants in the ppm range which are not captured by the air filtration system usually cause deposits on blading, which results in a severe drop in the performance of the compressor. Through the interdisciplinary approach proposed in this paper, it is possible to determine the evolution of the fouling phenomenon through the integration of studies in different research fields: (i) numerical simulation, (ii) power plant characteristics and (iii) particle-adhesion characteristics. In fact, the size of the particles, their concentrations and adhesion ability, and filtration efficiency represent the major contributors to performing a realistic quantitative analysis of fouling phenomena in an axial compressor. The aim of this work is the estimation of the actual deposits on the blade surface in terms of location and quantity. This study combines the impact/adhesion characteristic of the particles obtained through a CFD and the real size distribution of the contaminants in the air swallowed by the compressor. The blade zones affected by deposits are clearly reported by using easy-to-use contaminant maps realized on the blade surface, in terms of contaminant mass. The analysis has shown that particular fluid-dynamic phenomena and airfoil shape influence the pattern deposition. The use of a filtration system decreases the contamination of the blade and the charge level of the electrostatic seems to be less important than the air contaminant concentration. From these analyses, some guidelines for proper installation and management of the power plant (in terms of filtration systems and washing strategies) can be drawn up. Characterization of the air contaminants in the power plant location represents the most important step in improving the management of the gas turbine power plant.


2020 ◽  
Vol 21 (21) ◽  
pp. 8206
Author(s):  
Anouk Smits ◽  
Jo L. M. R. Leroy ◽  
Peter E. J. Bols ◽  
Jessie De Bie ◽  
Waleed F. A. Marei

Elevated non-esterified fatty acid (NEFA), predominantly palmitic acid (PA), concentrations in blood and follicular fluid are a common feature in maternal metabolic disorders such as obesity. This has a direct negative impact on oocyte developmental competence and the resulting blastocyst quality. We use NEFA-exposure during bovine oocyte in vitro maturation (IVM) as a model to mimic oocyte maturation under maternal metabolic stress conditions. However, the impact of supportive embryo culture conditions on these metabolically compromised zygotes are not known yet. We investigated if the addition of anti-apoptotic, antioxidative and mitogenic factors (namely, Insulin-Transferrin-Selenium (ITS) or serum) to embryo culture media would rescue development and important embryo quality parameters (cell proliferation, apoptosis, cellular metabolism and gene expression patterns) of bovine embryos derived from high PA- or high NEFA-exposed oocytes when compared to controls (exposed to basal NEFA concentrations). ITS supplementation during in vitro culture of PA-exposed oocytes supported the development of lower quality embryos during earlier development. However, surviving blastocysts were of inferior quality. In contrast, addition of serum to the culture medium did not improve developmental competence of PA-exposed oocytes. Furthermore, surviving embryos displayed higher apoptotic cell indices and an aberrant cellular metabolism. We conclude that some supportive embryo culture supplements like ITS and serum may increase IVF success rates of metabolically compromised oocytes but this may increase the risk of reduced embryo quality and may thus have other long-term consequences.


Sign in / Sign up

Export Citation Format

Share Document