scholarly journals Deep Brain Stimulation as a Treatment Approach for Anorexia Nervosa: a Systematic Literature Review

2019 ◽  
Vol 38 (03) ◽  
pp. 175-182 ◽  
Author(s):  
Ledismar José da Silva ◽  
Tâmara Husein Naciff ◽  
Maria Flávia Vaz de Oliveira

AbstractAnorexia nervosa is a psychiatric disorder characterized by distortions of body size, weight, and shape perception, as well as by food restriction and/or binge and purging behaviors. It mostly affects young women and causes severe negative impacts on their physical, psychological, and social health. Recent studies have analyzed deep brain stimulation (DBS), a neurosurgical procedure that involves electrode implantation in strategical brain areas, to obtain remission of the symptoms of anorexia nervosa. The results showed that the stimulation of areas associated to the neurocircuitry of anorexia nervosa, such as nucleus accumbens, anterior cingulate cortex, ventral striatum, and bed nucleus of the stria terminalis, provokes beneficial responses in terms of body mass index, quality of life, social functioning, and psychiatric comorbidities. Nevertheless, broader investigations are needed to endorse the clinical usage of DBS in the management of anorexia nervosa.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Philip E. Mosley ◽  
François Windels ◽  
John Morris ◽  
Terry Coyne ◽  
Rodney Marsh ◽  
...  

AbstractDeep brain stimulation (DBS) is a promising treatment for severe, treatment-resistant obsessive-compulsive disorder (OCD). Here, nine participants (four females, mean age 47.9 ± 10.7 years) were implanted with DBS electrodes bilaterally in the bed nucleus of the stria terminalis (BNST). Following a one-month postoperative recovery phase, participants entered a three-month randomised, double-blind, sham-controlled phase before a twelve-month period of open-label stimulation incorporating a course of cognitive behavioural therapy (CBT). The primary outcome measure was OCD symptoms as rated with the Yale-Brown Obsessive-Compulsive Scale (YBOCS). In the blinded phase, there was a significant benefit of active stimulation over sham (p = 0.025, mean difference 4.9 points). After the open phase, the mean reduction in YBOCS was 16.6 ± 1.9 points (χ2 (11) = 39.8, p = 3.8 × 10−5), with seven participants classified as responders. CBT resulted in an additive YBOCS reduction of 4.8 ± 3.9 points (p = 0.011). There were two serious adverse events related to the DBS device, the most severe of which was an infection during the open phase necessitating device explantation. There were no serious psychiatric adverse events related to stimulation. An analysis of the structural connectivity of each participant’s individualised stimulation field isolated right-hemispheric fibres associated with YBOCS reduction. These included subcortical tracts incorporating the amygdala, hippocampus and stria terminalis, in addition to cortical regions in the ventrolateral and ventromedial prefrontal cortex, parahippocampal, parietal and extrastriate visual cortex. In conclusion, this study provides further evidence supporting the efficacy and tolerability of DBS in the region of the BNST for individuals with otherwise treatment-refractory OCD and identifies a connectivity fingerprint associated with clinical benefit.


2020 ◽  
Author(s):  
Philip E. Mosley ◽  
François Windels ◽  
John Morris ◽  
Terry Coyne ◽  
Rodney Marsh ◽  
...  

1ABSTRACTDeep brain stimulation (DBS) is a promising treatment for severe, treatment-resistant obsessive-compulsive disorder (OCD). Here, nine participants (four females, mean age 47.9 ±10.7 years) were implanted with DBS electrodes bilaterally in the bed nucleus of the stria terminalis (BNST). Following a one-month postoperative recovery phase, participants entered a three-month randomised, double-blind, sham-controlled phase before a twelve-month period of open-label stimulation incorporating a course of cognitive behavioural therapy (CBT). The primary outcome measure was OCD symptoms as rated with the Yale-Brown Obsessive-Compulsive Scale (YBOCS). In the blinded phase, there was a significant benefit of active stimulation over sham (p = 0.025, mean difference 4.9 points). After the open phase, the mean reduction in YBOCS was 16.6 ±1.9 points (Χ2 (11) = 39.8, p = 3.8 × 10−5), with seven participants classified as responders. CBT resulted in an additive YBOCS reduction of 4.8 ±3.9 points (p = 0.011). There were two serious adverse events related to the DBS device, the most severe of which was an infection during the open phase necessitating device explantation. There were no psychiatric adverse events related to stimulation. An analysis of the structural connectivity of each participant’s individualised stimulation field isolated right-hemispheric fibres associated with YBOCS reduction. These included subcortical tracts incorporating the amygdala, hippocampus and stria terminalis, in addition to cortical regions in the ventrolateral and ventromedial prefrontal cortex, parahippocampal, parietal and extrastriate visual cortex. In conclusion, this study provides further evidence supporting the efficacy and tolerability of DBS for individuals with otherwise treatment-refractory OCD and identifies a connectivity fingerprint associated with clinical benefit.


2020 ◽  
Vol 26 (3) ◽  
pp. 278-284
Author(s):  
Laura Luyten

Recent clinical evidence has put forward a new region of interest for the treatment of psychiatric disorders. Deep brain stimulation in the bed nucleus of the stria terminalis (BST) significantly attenuates symptoms in patients suffering from severe, treatment-resistant obsessive-compulsive disorder (OCD). The BST is not typically implicated in OCD neuropsychopathology but is certainly not an unknown in the field of emotional learning and memory. Substantial evidence supports its involvement in anxiety responses, particularly to ambiguous threats. This seems consistent with the intolerance of uncertainty and tendency to overestimate danger, which fuel obsessions and compulsions in many patients with OCD. Translational research in rodents can help to obtain a deeper understanding of the effects of high-frequency electrical stimulation in the BST on anxiety, which may be valuable to improve treatment for psychiatric patients.


2020 ◽  
Vol 13 (11) ◽  
pp. e239316
Author(s):  
Isabel Fernandes Arroteia ◽  
Andreas Husch ◽  
Mehri Baniasadi ◽  
Frank Hertel

Anorexia nervosa (AN) severely impacts individual’s mental and physical health as well as quality of life. In 21% of cases no durable response to conservative treatment can be obtained. The serious course of the disease in the most severely affected patients justifies invasive treatment options. One of the treatment methods increasingly used in recent years is deep brain stimulation (DBS). A 42-year-old woman suffering from chronic AN of the bulimic subtype shows a 46.9% weight gain and a subjective increase in quality of life, 12 months after bilateral nucleus accumbens (NAcc) DBS implantation. No improvement in comorbid depression could be achieved. DBS of the NAcc is a treatment option to be considered in severe AN when conventional treatment modalities recommended by evidence-based guidelines have not been able to bring lasting relief to the patient’s suffering.


2018 ◽  
Vol 45 (2) ◽  
pp. E9 ◽  
Author(s):  
Alexander C. Whiting ◽  
Michael Y. Oh ◽  
Donald M. Whiting

The mechanisms of appetite disorders, such as refractory obesity and anorexia nervosa, have been vigorously studied over the last century, and these studies have shown that the central nervous system has significant involvement with, and responsibility for, the pathology associated with these diseases. Because deep brain stimulation has been shown to be a safe, efficacious, and adjustable treatment modality for a variety of other neurological disorders, it has also been studied as a possible treatment for appetite disorders. In studies of refractory obesity in animal models, the ventromedial hypothalamus, the lateral hypothalamus, and the nucleus accumbens have all demonstrated elements of success as deep brain stimulation targets. Multiple targets for deep brain stimulation have been proposed for anorexia nervosa, with research predominantly focusing on the subcallosal cingulate, the nucleus accumbens, and the stria terminalis and medial forebrain bundle. Human deep brain stimulation studies that focus specifically on refractory obesity and anorexia nervosa have been performed but with limited numbers of patients. In these studies, the target for refractory obesity has been the lateral hypothalamus, ventromedial hypothalamus, and nucleus accumbens, and the target for anorexia nervosa has been the subcallosal cingulate. These studies have shown promising findings, but further research is needed to elucidate the long-term efficacy of deep brain stimulation for the treatment of appetite disorders.


Sign in / Sign up

Export Citation Format

Share Document