scholarly journals Bonding Strength of Luting Cement to Zirconia-Based Ceramic Under Different Surface Treatments

2019 ◽  
Vol 13 (02) ◽  
pp. 222-228
Author(s):  
Fabio Mendes ◽  
Mauricio M. Zanini ◽  
Jamille Favarão ◽  
Veridiana Camilotti ◽  
Mario A. C. Sinhoreti ◽  
...  

Abstract Objectives The aim of this study was to evaluate the bonding strength of self-adhesive luting cement to zirconia under different surface treatments. Materials and Methods Thirty-two zirconia samples were randomly divided into eight experimental groups based on the surface treatment employed (Control: no surface treatment; PMM: wear with diamond bur; JAT: blasting with glass beads; PMA: wear with a medium-roughness milling machine; Primer: primer application on the surface without treatment; PMM +Primer: PMM treatment plus primer application; JAT+Primer: JAT treatment plus primer application; and PMA+Primer: PMA treatment plus primer application). Cement cylinders were built on the ceramic surfaces, and the groups were subdivided according to the storage time employed (i.e., 24 hours or 60 days). After storage, the samples were subjected to microshear testing. Statistical Analysis The Kruskal–Wallis test followed by the Dunn test was employed for comparison between the groups (p < 0.05). Results The PMM group yielded the optimal results and the mean values increased after both storage times following the primer application. The Control, PMA, and JAT groups gave similar results after 24 hours, while the JAT group gave superior results following primer application over this storage time. After 60 days of storage, all groups gave improved results following chemical treatment with a primer. Conclusion It was concluded that mechanical preparation using the diamond bur followed by primer application significantly improved the bond strength between the ceramic and the luting cement.

2020 ◽  
Vol 19 ◽  
pp. e206155
Author(s):  
Yançanã Luizy Gruber ◽  
Thaís Emanuelle Bakaus ◽  
Bruna Fortes Bittencourt ◽  
João Carlos Gomes ◽  
Alessandra Reis ◽  
...  

Aim: The roughness and micromorphology of various surface treatments in aged metal-free crowns and the bond strength of these crowns repaired with composite resin (CR) was evaluated in vitro. Methods: A CR core build-up was confectioned in 60 premolars and prepared for metal-free crowns. Prepared teeth were molded with the addition of silicone, and the laboratory ceromer/fiber-reinforced crowns (SR Adoro/Fibrex Lab) were fabricated. Subsequently, the crowns were cemented and artificially aged in a mechanical fatigue device (1.2 X 106 cycles), then divided into 4 groups (n = 15) according to the surface treatment: 1) phosphoric acid etching (PA); 2) PA + silane application; 3) roughening with a diamond bur + PA; and 4) sandblasting with Al2O3 + PA. After the treatments, the crowns (n = 2) were qualitatively analyzed by scanning electron microscope (SEM) and surface roughness (n = 5) was analyzed before and after the surface treatment (Ra parameter). The remaining crowns (n = 8) received standard repair with an adhesive system (Tetric N-Bond) and a nanohybrid CR (Tetric N-Ceram), and the microshear bond strength (SBS) test was performed (0.5 mm/min). Roughness and SBS data were analyzed by one- and two-way ANOVA, respectively, as well as Tukey’s post-test (α = 0.05). Results: Sandblasting with Al2O3 + PA resulted in the highest final roughness and SBS values. The lowest results were observed in the PA group, whereas the silane and diamond bur groups showed intermediate values. Conclusion: It may be concluded that indirect ceromer crowns sandblasted with aluminum oxide prior to PA etching promote increased roughness surface and bond strength values.


2017 ◽  
Vol 22 (4) ◽  
pp. 47-52 ◽  
Author(s):  
Marina Cumerlato ◽  
Eduardo Martinelli de Lima ◽  
Leandro Berni Osorio ◽  
Eduardo Gonçalves Mota ◽  
Luciane Macedo de Menezes ◽  
...  

ABSTRACT Objective: The aim of this in vitro study was to evaluate and compare the effects of grinding, drilling, sandblasting, and ageing prefabricated teeth (PfT) on the shear bond strength (SBS) of orthodontic brackets, as well as the effects of surface treatments on the adhesive remnant index (ARI). Methods: One-hundred-ninety-two PfT were divided into four groups (n = 48): Group 1, no surface treatment was done; Group 2, grinding was performed with a cylindrical diamond bur; Group 3, two drillings were done with a spherical diamond bur; Group 4, sandblasting was performed with 50-µm aluminum oxide. Before the experiment, half of the samples stayed immersed in distilled water at 37oC for 90 days. Brackets were bonded with Transbond XT and shear strength tests were carried out using a universal testing machine. SBS were compared by surface treatment and by ageing with two-way ANOVA, followed by Tukey’s test. ARI scores were compared between surface treatments with Kruskal-Wallis test followed by Dunn’s test. Results: Surface treatments on PfT enhanced SBS of brackets (p< 0.01), result not observed with ageing (p= 0.45). Groups II, III, and IV showed higher SBS and greater ARI than the Group 1 (p< 0.05). SBS was greater in the groups 3 and 4 (drilling, sandblasting) than in the Group 2 (grinding) (p< 0.05). SBS and ARI showed a positive correlation (Spearman’s R2= 0.57; p< 0.05). Conclusion: Surface treatment on PfT enhanced SBS of brackets, however ageing did not show any relevance. Sandblasting and drilling showed greater SBS than grinding. There was a positive correlation between SBS and ARI.


2013 ◽  
Vol 38 (1) ◽  
pp. 91-99 ◽  
Author(s):  
J Palasuk ◽  
JA Platt ◽  
SD Cho ◽  
JA Levon ◽  
DT Brown ◽  
...  

SUMMARY Objective: This laboratory study compared the repaired microtensile bond strengths of aged silorane resin composite using different surface treatments and either silorane or methacrylate resin composite. Methods: One hundred eight silorane resin composite blocks (Filtek LS) were fabricated and aged by thermocycling between 8°C and 48°C (5000 cycles). A control (solid resin composite) and four surface treatment groups (no treatment, acid treatment, aluminum oxide sandblasting, and diamond bur abrasion) were tested (N=12 blocks, 108 beams/group). Each treatment group was randomly divided in half and repaired with either silorane resin composite (LS adhesive) or methacrylate resin composite (Filtek Z250/Single Bond Plus). After 24 hours in 37°C distilled water, microtensile bond strength testing was performed using a non-trimming technique. Surface topography after surface treatment was analyzed using scanning electron microscopy (SEM). Failure mode was examined using optical microscopy (50×). Results: Weibull-distribution survival analysis revealed that aluminum oxide sandblasting followed by silorane or methacrylate resin composite and acid treatment with methacrylate resin composite provided insignificant differences from the control (p&gt;0.05). All other groups were significantly lower than the control. Failure was primarily adhesive in all groups. Conclusion: Aluminum oxide sandblasting produced microtensile bond strength not different from the cohesive strength of silorane resin composite. After aluminum oxide sandblasting, aged silorane resin composite can be repaired with either silorane resin composite with LS system adhesive or methacrylate resin composite with methacrylate dental adhesive.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3822
Author(s):  
Dominik Klaiber ◽  
Sebastian Spintzyk ◽  
Juergen Geis-Gerstorfer ◽  
Andrea Klink ◽  
Alexey Unkovskiy ◽  
...  

When applying a digital workflow, custom artificial resin teeth have to be integrated into a milled complete denture base, using polymethylmethacrylate (PMMA) applied with a powder–liquid technique. Debonding of denture teeth from dentures is reported to be a frequent complication. No evidence is provided as to which method of surface treatment may enhance the bonding strength. The bonding strength between artificial teeth and PMMA (Group A, n = 60), as well as between the PMMA and industrial PMMA (Group B, n = 60), was investigated following no treatment, monomer application, sandblasting, oxygen plasma, and nitrogen plasma treatment. Surface-roughness values and SEM images were obtained for each group. Shear bond strength (SBS) and fracture mode were analyzed after thermocycling. Within Group A, statistically significant higher SBS was found for all surface treatments, except for nitrogen plasma. In Group B, only nitrogen plasma showed a statistically lower SBS compared to the reference group which was equivalent to all surface treatments. Conclusions: Within the limitations of the present study, the monomer application can be proposed as the most effective surface-treatment method to bond custom artificial teeth into a milled PMMA denture base, whereas nitrogen plasma impairs the bonding strength.


2010 ◽  
Vol 21 (4) ◽  
pp. 322-326 ◽  
Author(s):  
Taciana Marco Ferraz Caneppele ◽  
Lucas V. Zogheib ◽  
Isabela Gomes ◽  
Andressa S. Kuwana ◽  
Clóvis Pagani

This study evaluated the influence of surface treatment on the shear bond strength of a composite resin (CR), previously submitted to the application of a temporary cement (TC), to an adhesive luting cement. Eight-four CR cylinders (5 mm diameter and 3 mm high) were fabricated and embedded in acrylic resin. The sets were divided into 6 groups (G1 to G6) (n=12). Groups 2 to 6 received a coat of TC. After 24 h, TC was removed and the CR surfaces received the following treatments: G2: ethanol; G3: rotary brush and pumice; G4: air-abrasion; G5: air-abrasion and adhesive system; G6: air-abrasion, acid etching and adhesive system. G1 (control) did not receive TC or any surface treatment. The sets were adapted to a matrix and received an increment of an adhesive luting cement. The specimens were subjected to the shear bond strength test. ANOVA and Tukeyʼs tests showed that G3 (8.53 MPa) and G4 (8.63 MPa) differed significantly (p=0.001) from G1 (13.34 MPa). The highest mean shear bond strength values were found in G5 (14.78 MPa) and G6 (15.86 MPa). Air-abrasion of CR surface associated with an adhesive system provided an effective bond of the CR to the adhesive luting cement, regardless the pre-treatment with the phosphoric acid.


2001 ◽  
Vol 15 (1) ◽  
pp. 64-69 ◽  
Author(s):  
Adriana Ferreira QUINTAS ◽  
Marco Antonio BOTTINO ◽  
Maximiliano Piero NEISSER ◽  
Maria Auxiliadora Junho de ARAÚJO

This study aims to evaluate the role of surface treatments performed on plain carbon fiber posts, in relation to serrated carbon fiber posts, in the retention of the composite core. Fifty carbon fiber posts received surface treatments in order to verify their influence on the retention of the core material. An acrylic resin mold was developed in order to precisely fit the post, leaving a machined space to accommodate a self-curing composite resin. After the surface treatment, a primer was applied on the coronal portion of all posts, which were then dried. They were fitted to the mold and received a 3 mm composite core. All specimens were thermocycled and then stored in distilled water for a week. Tension test was performed at a speed of 0.5 mm/min until there was lack of adhesion or fracture of the core. The conclusions were: a) the values of retention related to aluminum oxide spray (group A), depth cutter diamond burs (group C) and posts with machined coronal portion (group D) were comparable to those of serrated posts (group E), although no statistically significant difference between these groups was found; b) the mean values of core retention in group B (medium grit diamond burs) were statistically lower than those of other groups.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Amr M. Elnaghy ◽  
Ayman Mandorah ◽  
Ali H. Hassan ◽  
Alaa Elshazli ◽  
Shaymaa Elsaka

Abstract Background To evaluate the effect of surface treatments on the push-out bond strength of Biodentine (BD) and white mineral trioxide aggregate (WMTA) to fiber posts. Methods Two brands of fiber posts were used: Reblida post; RP and RelyX post; RX. Each type of post (n = 80/group) was divided into four groups (n = 20/group) and exposed to surface treatment as follows: Control (no treatment), sandblasting (SB), hydrofluoric acid (HF), and TiF4 4 wt/v%. Each group was further subdivided into two subgroups (n = 10/subgroup) based on the type of CSCs used as follows: Subgroup A: BD and Subgroup B: WMTA. Push-out bond strength of BD and WMTA to glass fiber posts was assessed. Data were statistically analyzed using three-way ANOVA and Tukey’s test. A Weibull analysis was performed on the push-out bond strength data. Results BD showed higher bond strength than WMTA (P < 0.001). The push-out bond strength for posts treated with TiF4 4 wt/v% showed greater bond strength than the other surface treatments (P < 0.05). The BD/RP-TiF4 4 wt/v% showed the greater characteristic bond strength (σ0) (15.93) compared with the other groups. Surface treatments modified the surface topography of glass fiber posts. Conclusions The BD/RP-TiF4 4 wt/v% showed greater bond strength compared with the other groups. The TiF4 4 wt/v% surface treatment enhanced the bond strength of BD and WMTA to glass fiber posts than the other treatments. Surface treatment of fiber post with TiF4 4 wt/v% could be used to improve the bond strength with calcium silicate-based cements.


2005 ◽  
Vol 21 (7) ◽  
pp. 625-632 ◽  
Author(s):  
Andy van Dalen ◽  
Albert J. Feilzer ◽  
Cornelis J. Kleverlaan

Sign in / Sign up

Export Citation Format

Share Document