Magnetic Core–Shell Nitrogen-Doped Silica Nanoparticle Catalysts for Multicomponent Coupling

Synfacts ◽  
2021 ◽  
Vol 17 (02) ◽  
pp. 0190
2021 ◽  
Author(s):  
Jingjing Liu ◽  
Wenyao Li ◽  
Zhe Cui ◽  
Jiaojiao Li ◽  
Fang Yang ◽  
...  

A core–shell CoMn-P@NG heterostructure electrode demonstrated impressive performance of hydrogen evolution over a broad pH range and maintained excellent stability.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
H. Rajabi-Moghaddam ◽  
M. R. Naimi-Jamal ◽  
M. Tajbakhsh

AbstractIn the present work, an attempt has been made to synthesize the 1,2,3-triazole derivatives resulting from the click reaction, in a mild and green environment using the new copper(II)-coated magnetic core–shell nanoparticles Fe3O4@SiO2 modified by isatoic anhydride. The structure of the catalyst has been determined by XRD, FE-SEM, TGA, VSM, EDS, and FT-IR analyzes. The high efficiency and the ability to be recovered and reused for at least up to 6 consecutive runs are some superior properties of the catalyst.


2016 ◽  
Vol 52 (78) ◽  
pp. 11693-11696 ◽  
Author(s):  
Lei Liu ◽  
Shi-Da Xu ◽  
Qing Yu ◽  
Feng-Yun Wang ◽  
Hui-Ling Zhu ◽  
...  

Nitrogen-doped hollow carbon spheres with a wrinkled surface were synthesized through direct pyrolysis of core–shell structured graphene oxide–resol@melamine formaldehyde composites.


2015 ◽  
Vol 33 ◽  
pp. 154-160 ◽  
Author(s):  
Kyung Yong Ko ◽  
Hyemin Kang ◽  
Wonseon Lee ◽  
Chang-Wan Lee ◽  
Jusang Park ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2497
Author(s):  
Xinxin Long ◽  
Huanyu Chen ◽  
Tijun Huang ◽  
Yajing Zhang ◽  
Yifeng Lu ◽  
...  

A novel core-shell magnetic Prussian blue-coated Fe3O4 composites (Fe3O4@PB) were designed and synthesized by in-situ replication and controlled etching of iron oxide (Fe3O4) to eliminate Cd (II) from micro-polluted water. The core-shell structure was confirmed by TEM, and the composites were characterized by XRD and FTIR. The pore diameter distribution from BET measurement revealed the micropore-dominated structure of Fe3O4@PB. The effects of adsorbents dosage, pH, and co-existing ions were investigated. Batch results revealed that the Cd (II) adsorption was very fast initially and reached equilibrium after 4 h. A pH of 6 was favorable for Cd (II) adsorption on Fe3O4@PB. The adsorption rate reached 98.78% at an initial Cd (II) concentration of 100 μg/L. The adsorption kinetics indicated that the pseudo-first-order and Elovich models could best describe the Cd (II) adsorption onto Fe3O4@PB, indicating that the sorption of Cd (II) ions on the binding sites of Fe3O4@PB was the main rate-limiting step of adsorption. The adsorption isotherm well fitted the Freundlich model with a maximum capacity of 9.25 mg·g−1 of Cd (II). The adsorption of Cd (II) on the Fe3O4@PB was affected by co-existing ions, including Cu (II), Ni (II), and Zn (II), due to the competitive effect of the co-adsorption of Cd (II) with other co-existing ions.


BIOspektrum ◽  
2021 ◽  
Vol 27 (4) ◽  
pp. 442-444
Author(s):  
Frank Mickoleit ◽  
Sabine Rosenfeldt ◽  
Anna S. Schenk ◽  
Dirk Schüler ◽  
René Uebe

AbstractBacterial magnetosomes represent magnetic core-shell nanoparticles biomineralized by magnetotactic bacteria like Magnetospirillum gryphiswaldense. The establishment of fermentation regimes for high-yield particle production, standardized isolation procedures as well as the development of a genetic toolkit for the generation of “tailored” particles might soon pave the way for the application of engineered magnetosomes in the biomedical and biotechnological field.


Sign in / Sign up

Export Citation Format

Share Document