scholarly journals Early Neuromuscular Blockade in Children with Pediatric Acute Respiratory Distress Syndrome

2020 ◽  
Vol 09 (03) ◽  
pp. 201-206
Author(s):  
Surabhi Chandra ◽  
Sahil Goel ◽  
Ritika Dawra

AbstractPediatric acute respiratory distress syndrome (PARDS) is a challenging problem with high mortality. Role of neuromuscular blockade in the management of ARDS to date has been controversial, and this study was done to study the role of neuromuscular blockade in children having PARDS and development of associated complications, if any. This was a prospective, case–control study conducted in the pediatric intensive care unit (PICU) of a tertiary care teaching hospital, over a period of 24 months. Patients of age 1 to 18 years who presented with or developed PARDS during their course of hospitalization were included after written informed consent was obtained from their parents and/or guardians. Patients with PARDS requiring invasive mechanical ventilation were partitioned into a case group and a control group. Case group patients were sedated and paralyzed using midazolam (1 µg/kg/min) and vecuronium (1 µg/kg/min), respectively, along with institution of definitive management. Control group patients were given definitive and supportive therapy, but no neuromuscular blocking agents (NMBAs). All patients were followed up for signs and symptoms of myopathy or neuropathy during the entire duration of hospital stay and up to 3 months after discharge. During the study period, 613 patients were admitted to the PICU of which 91 patients qualified as having PARDS. Sepsis was the main etiology in 67 of the 91 patients (73.6%) with PARDS. Fifty-nine patients were included in the study, of which 29 patients were included in the case group and 30 patients were included in the control group. Among the 29 case group patients, 25 patients (86.2%) were successfully extubated. Four patients from the case group expired, while 14 out of 30 control group patients (46.7%) expired. Hypotension was present in 26 case group patients (89.6%), of which all showed resolution within 48 hours of definitive treatment. The mean time to resolution of hypotension was 41.6 hours (standard deviation [SD]: 5.759; range: 24–48) for case group patients, significantly lower (p < 0.0001) than the mean time to resolution of 103 hours (SD: 18.995; range: 90–126) for the 10 control group patients with hypotension that survived. Mean oxygenation index (OI) following 48 hours of vecuronium therapy was significantly lower (p < 0.0001; 95% confidence interval: 5.9129–9.9671) than mean OI at admission for case group patients. None of the patients receiving vecuronium exhibited neuromuscular deficit during their hospital stay, at time of discharge, or at follow-up evaluation up to 3 months after discharge. In this study, pediatric cases diagnosed with PARDS and managed with mechanical ventilation and vecuronium therapy had improved mean OI following 48 hours of NMBA therapy and a lower mortality when compared with matched control group patients. Incidence of NMBA-related weakness was not commonly observed in these patients.

2014 ◽  
Vol 27 (2) ◽  
pp. 211 ◽  
Author(s):  
Lúcia Taborda ◽  
Filipa Barros ◽  
Vitor Fonseca ◽  
Manuel Irimia ◽  
Ramiro Carvalho ◽  
...  

<strong>Introduction:</strong> Acute Respiratory Distress Syndrome has a significant incidence and mortality at Intensive Care Units. Therefore, more studies are necessary in order to develop new effective therapeutic strategies. The authors have proposed themselves to characterize Acute Respiratory Distress Syndrome patients admitted to an Intensive Care Unit for 2 years.<br /><strong>Material and Methods:</strong> This was an observational retrospective study of the patients filling the Acute Respiratory Distress Syndrome criteria from the American-European Consensus Conference on ARDS, being excluded those non invasively ventilated. Demographic data, Acute Respiratory Distress Syndrome etiology, comorbidities, Gravity Indices, PaO2/FiO2, ventilator modalities and programmation, pulmonary compliance, days of invasive mechanical ventilation, corticosteroids use, rescue therapies, complications, days at<br />Intensive Care Unit and obits were searched for and were submitted to statistic description and analysis.<br /><strong>Results:</strong> A 40 patients sample was obtained, with a median age of 72.5 years (interquartile range = 22) and a female:male ratio of ≈1:1.86. Fifty five percent of the Acute Respiratory Distress Syndrome cases had pulmonary etiology. The mean minimal PaO2/FiO2 was 88mmHg (CI 95%: 78.5–97.6). The mean maximal applied PEEP was 12.4 cmH2O (Standard Deviation 4.12) and the mean maximal used tidal volume was 8.2 mL/ Kg ideal body weight (CI 95%: 7.7–8.6). The median invasive mechanical ventilation days was 10. Forty seven and one half percent of the patients had been administered corticosteroids and 52.5% had been submitted to recruitment maneuvers. The most frequent complication was Ventilator Associated Pneumonia (20%). The median Intensive Care Unit stay was 10.7 days (interquartile range 10.85). The fatality rate was 60%. The probability of the favorable outcome ‘non-death in Intensive Care Unit’ was 4.4x superior for patients who were administered corticosteroids and 11x superior for patients &lt; 65 years old.<br /><strong>Discussion and Conclusions:</strong> Acute Respiratory Distress Syndrome is associated with long hospitalization and significant mortality. New prospective studies will be necessary to endorse the potential benefit of steroid therapy and to identify the subgroups of patients that warrant its use.


2020 ◽  
pp. 088506662090680 ◽  
Author(s):  
Mitchell S. Buckley ◽  
Sumit K. Agarwal ◽  
Roxanne Garcia-Orr ◽  
Rajeev Saggar ◽  
Robert MacLaren

Purpose: Several reports have demonstrated similar effects on oxygenation between inhaled epoprostenol (iEPO) compared to inhaled nitric oxide (iNO) for acute respiratory distress syndrome (ARDS). Previous studies directly comparing oxygenation and clinical outcomes between iEPO and iNO exclusively in an adult ARDS patient population utilized a weight-based dosing strategy. The purpose of this study was to compare the clinical and economic impact between iNO and fixed-dosed iEPO for ARDS in adult intensive care unit (ICU) patients. Methods: This retrospective cohort study was conducted at a major academic medical center between January 1, 2014, and October 31, 2018. Patients ≥18 years of age with moderate-to-severe ARDS were included. The primary end point was to compare the mean change in partial arterial oxygen pressure to fraction of inspired oxygen (Pao 2: Fio 2) at 4 hours from baseline between iEPO and iNO. Other secondary aims were total acquisition drug costs, in-hospital mortality, ICU and hospital length of stay, and duration of mechanical ventilation. Results: A total of 239 patients were included with 139 (58.2%) and 100 (41.8%) in the iEPO and iNO groups, respectively. The mean change in Pao 2: Fio 2 at 4 hours from baseline in the iEPO and iNO groups were 31.4 ± 54.6 and 32.4 ± 42.7 mm Hg, respectively ( P = .88). The responder rate at 4 hours was similar between iEPO and iNO groups (64.7% and 66.0%, respectively, P = .84). Clinical outcomes including mortality, overall hospital and ICU length of stay, and mechanical ventilation duration were similar between iEPO and iNO groups. Estimated annual cost-savings realized with iEPO was USD1 074 433. Conclusion: Fixed-dose iEPO was comparable to iNO in patients with moderate-to-severe ARDS for oxygenation and ventilation parameters as well as clinical outcomes. Significant cost-savings were realized with iEPO use.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Martina Hermann ◽  
Daniel Laxar ◽  
Christoph Krall ◽  
Christina Hafner ◽  
Oliver Herzog ◽  
...  

Abstract Background Duration of invasive mechanical ventilation (IMV) prior to extracorporeal membrane oxygenation (ECMO) affects outcome in acute respiratory distress syndrome (ARDS). In coronavirus disease 2019 (COVID-19) related ARDS, the role of pre-ECMO IMV duration is unclear. This single-centre, retrospective study included critically ill adults treated with ECMO due to severe COVID-19-related ARDS between 01/2020 and 05/2021. The primary objective was to determine whether duration of IMV prior to ECMO cannulation influenced ICU mortality. Results During the study period, 101 patients (mean age 56 [SD ± 10] years; 70 [69%] men; median RESP score 2 [IQR 1–4]) were treated with ECMO for COVID-19. Sixty patients (59%) survived to ICU discharge. Median ICU length of stay was 31 [IQR 20.7–51] days, median ECMO duration was 16.4 [IQR 8.7–27.7] days, and median time from intubation to ECMO start was 7.7 [IQR 3.6–12.5] days. Fifty-three (52%) patients had a pre-ECMO IMV duration of > 7 days. Pre-ECMO IMV duration had no effect on survival (p = 0.95). No significant difference in survival was found when patients with a pre-ECMO IMV duration of < 7 days (< 10 days) were compared to ≥ 7 days (≥ 10 days) (p = 0.59 and p = 1.0). Conclusions The role of prolonged pre-ECMO IMV duration as a contraindication for ECMO in patients with COVID-19-related ARDS should be scrutinised. Evaluation for ECMO should be assessed on an individual and patient-centred basis.


2014 ◽  
Vol 121 (1) ◽  
pp. 189-198 ◽  
Author(s):  
Nuria E. Cabrera-Benitez ◽  
John G. Laffey ◽  
Matteo Parotto ◽  
Peter M. Spieth ◽  
Jesús Villar ◽  
...  

Abstract One of the most challenging problems in critical care medicine is the management of patients with the acute respiratory distress syndrome. Increasing evidence from experimental and clinical studies suggests that mechanical ventilation, which is necessary for life support in patients with acute respiratory distress syndrome, can cause lung fibrosis, which may significantly contribute to morbidity and mortality. The role of mechanical stress as an inciting factor for lung fibrosis versus its role in lung homeostasis and the restoration of normal pulmonary parenchymal architecture is poorly understood. In this review, the authors explore recent advances in the field of pulmonary fibrosis in the context of acute respiratory distress syndrome, concentrating on its relevance to the practice of mechanical ventilation, as commonly applied by anesthetists and intensivists. The authors focus the discussion on the thesis that mechanical ventilation—or more specifically, that ventilator-induced lung injury—may be a major contributor to lung fibrosis. The authors critically appraise possible mechanisms underlying the mechanical stress–induced lung fibrosis and highlight potential therapeutic strategies to mitigate this fibrosis.


Author(s):  
Sean Levy ◽  
Ednan Bajwa

The role of corticosteroids in the treatment of acute respiratory distress syndrome (ARDS), and in particular, those patients with persistent ARDS (defined as > 7 days since onset) has been controversial. In this ARDSNet study, subjects who received corticosteroids had similar outcomes as compared with placebo. Particular harm was seen in subjects with ARDS onset more than 14 days prior to treatment. Overall adverse events were similar between groups, although a higher rate of neuromyopathy was noted in those receiving steroids. Despite these findings, improvements in physiologic parameters and certain secondary endpoints suggest a possible role for steroids, perhaps with a more prolonged tapering of the drug following liberation from mechanical ventilation.


F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 1322 ◽  
Author(s):  
Rahul S. Nanchal ◽  
Jonathon D. Truwit

Acute respiratory distress syndrome (ARDS) is a clinically and biologically heterogeneous disorder associated with many disease processes that injure the lung, culminating in increased non-hydrostatic extravascular lung water, reduced compliance, and severe hypoxemia. Despite enhanced understanding of molecular mechanisms, advances in ventilatory strategies, and general care of the critically ill patient, mortality remains unacceptably high. The Berlin definition of ARDS has now replaced the American-European Consensus Conference definition. The recently concluded Large Observational Study to Understand the Global Impact of Severe Acute Respiratory Failure (LUNG-SAFE) provided worldwide epidemiological data of ARDS including prevalence, geographic variability, mortality, and patterns of mechanical ventilation use. Failure of clinical therapeutic trials prompted the investigation and subsequent discovery of two distinct phenotypes of ARDS (hyper-inflammatory and hypo-inflammatory) that have different biomarker profiles and clinical courses and respond differently to the random application of positive end expiratory pressure (PEEP) and fluid management strategies. Low tidal volume ventilation remains the predominant mainstay of the ventilatory strategy in ARDS. High-frequency oscillatory ventilation, application of recruitment maneuvers, higher PEEP, extracorporeal membrane oxygenation, and alternate modes of mechanical ventilation have failed to show benefit. Similarly, most pharmacological therapies including keratinocyte growth factor, beta-2 agonists, and aspirin did not improve outcomes. Prone positioning and early neuromuscular blockade have demonstrated mortality benefit, and clinical guidelines now recommend their use. Current ongoing trials include the use of mesenchymal stem cells, vitamin C, re-evaluation of neuromuscular blockade, and extracorporeal carbon dioxide removal. In this article, we describe advances in the diagnosis, epidemiology, and treatment of ARDS over the past decade.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Kirsty Michelle Clarke ◽  
Vivi Riga ◽  
Amy-lee Shirodkar ◽  
Joel Meyer

Abstract Background Non-arteritic ischaemic optic neuropathy (NAION) is a rare but harmful complication of prone positioning. Prone mechanical ventilation is a therapeutic strategy which has been used extensively during the COVID-19 pandemic to treat acutely hypoxemic patients with COVID-19 related acute respiratory distress syndrome (ARDS). Though a small number of cases of unilateral NAION have been reported in patients testing positive for the SARS-CoV-2 virus, we describe what is to our knowledge, the first reported case of bilateral NAION occurring in a patient proned extensively for the treatment of COVID-19 related ARDS. We consider the potential aetiological factors leading to NAION after prone mechanical ventilation in patients with COVID-19 and suggest strategies to protect against its development. Case presentation : We report a case of severe, irreversible, visual impairment secondary to bilateral anterior ION in a fifty-five-year-old male who underwent eight episodes of prone mechanical ventilation to treat COVID-19 related ARDS. Once weaned from his sedation he reported bilateral painless vision loss, and bedside ophthalmological assessment identified a reduced visual acuity of 3/30 unaided in the left eye and counting fingers in the right. Dilated indirect ophthalmoscopy revealed inferotemporal optic disc oedema with splinter haemorrhages in the right eye and mild disc oedema, temporal pallor, and nerve fibre layer haemorrhages inferiorly in the left eye. Humphrey visual field 24 − 2 testing confirmed a severely constricted visual field with macular sparing on the right and depressed inferonasal vision with preserved peripheral vision on the left eye. OCT disc imaging shortly after diagnosis revealed bilateral disc swelling and flame haemorrhages in the right eye. Conclusions NAION is a devastating, but preventable complication of prone positioning, which may pose significant risk of vision loss in patients with COVID-19 related ARDS.


2020 ◽  
Vol 71 (Supplement_4) ◽  
pp. S400-S408
Author(s):  
Zongsheng Wu ◽  
Yao Liu ◽  
Jingyuan Xu ◽  
Jianfeng Xie ◽  
Shi Zhang ◽  
...  

Abstract Background Mechanical ventilation is crucial for acute respiratory distress syndrome (ARDS) patients and diagnosis of ventilator-associated pneumonia (VAP) in ARDS patients is challenging. Hence, an effective model to predict VAP in ARDS is urgently needed. Methods We performed a secondary analysis of patient-level data from the Early versus Delayed Enteral Nutrition (EDEN) of ARDSNet randomized controlled trials. Multivariate binary logistic regression analysis established a predictive model, incorporating characteristics selected by systematic review and univariate analyses. The model’s discrimination, calibration, and clinical usefulness were assessed using the C-index, calibration plot, and decision curve analysis (DCA). Results Of the 1000 unique patients enrolled in the EDEN trials, 70 (7%) had ARDS complicated with VAP. Mechanical ventilation duration and intensive care unit (ICU) stay were significantly longer in the VAP group than non-VAP group (P &lt; .001 for both) but the 60-day mortality was comparable. Use of neuromuscular blocking agents, severe ARDS, admission for unscheduled surgery, and trauma as primary ARDS causes were independent risk factors for VAP. The area under the curve of the model was .744, and model fit was acceptable (Hosmer-Lemeshow P = .185). The calibration curve indicated that the model had proper discrimination and good calibration. DCA showed that the VAP prediction nomogram was clinically useful when an intervention was decided at a VAP probability threshold between 1% and 61%. Conclusions The prediction nomogram for VAP development in ARDS patients can be applied after ICU admission, using available variables. Potential clinical benefits of using this model deserve further assessment.


Sign in / Sign up

Export Citation Format

Share Document