Dimethyl fumarate (DMF) inhibits proliferation and induce specific cell death in hepatocellular carcinoma (HCC)

2021 ◽  
Author(s):  
M Michalski ◽  
O Wiesner ◽  
M Müller-Schilling ◽  
K Gülow
Blood ◽  
2016 ◽  
Vol 128 (6) ◽  
pp. 805-815 ◽  
Author(s):  
Jan P. Nicolay ◽  
Karin Müller-Decker ◽  
Anne Schroeder ◽  
Markus Brechmann ◽  
Markus Möbs ◽  
...  

Key Points DMF induces specific cell death in CTCL cells and inhibits CTCL tumor growth and metastasis in vivo via inhibition of NF-κB. DMF therefore represents a promising, nontoxic novel therapeutic approach to treating CTCL.


2012 ◽  
Vol 48 (6) ◽  
pp. 738-750 ◽  
Author(s):  
Issei Saeki ◽  
Shuji Terai ◽  
Koichi Fujisawa ◽  
Taro Takami ◽  
Naoki Yamamoto ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nghiem Xuan Hoan ◽  
Pham Thi Minh Huyen ◽  
Mai Thanh Binh ◽  
Ngo Tat Trung ◽  
Dao Phuong Giang ◽  
...  

AbstractThe inhibitory effects of programmed cell death 1/programmed cell death ligand 1 (PD-1/PD-L1) modulates T-cell depletion. T-cell depletion is one of the key mechanisms of hepatitis B virus (HBV) persistence, in particular liver disease progression and the development of hepatocellular carcinoma (HCC). This case–control study aimed to understand the significance of PD-1 polymorphisms (PD-1.5 and PD-1.9) association with HBV infection risk and HBV-induced liver disease progression. Genotyping of PD-1.5 and PD-1.9 variants was performed by direct Sanger sequencing in 682 HBV-infected patients including chronic hepatitis (CHB, n = 193), liver cirrhosis (LC, n = 183), hepatocellular carcinoma (HCC, n = 306) and 283 healthy controls (HC). To analyze the association of PD-1 variants with liver disease progression, a binary logistic regression, adjusted for age and gender, was performed using different genetic models. The PD-1.9 T allele and PD-1.9 TT genotype are significantly associated with increased risk of LC, HCC, and LC + HCC. The frequencies of PD-1.5 TT genotype and PD-1.5 T allele are significantly higher in HCC compared to LC patients. The haplotype CT (PD-1.5 C and PD-1.9 T) was significantly associated with increased risk of LC, HCC, and LC + HCC. In addition, the TC (PD-1.5 T and PD-1.9 C) haplotype was associated with the risk of HCC compared to non-HCC. The PD-1.5 CC, PD-1.9 TT, genotype, and the CC (PD-1.5 C and PD-1.9) haplotype are associated with unfavorable laboratory parameters in chronic hepatitis B patients. PD-1.5 and PD1.9 are useful prognostic predictors for HBV infection risk and liver disease progression.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Pengfei Liu ◽  
Jing Yuan ◽  
Yetong Feng ◽  
Xin Chen ◽  
Guangsuo Wang ◽  
...  

AbstractFerroptosis is a novel type of programmed cell death, which is different from apoptosis and autophagic cell death. Recently, ferroptosis has been indicated to contribute to the in vitro neurotoxicity induced by isoflurane, which is one of the most common anesthetics in clinic. However, the in vivo position of ferroptosis in isoflurane-induced neurotoxicity as well as learning and memory impairment remains unclear. In this study, we mainly explored the relationship between ferroptosis and isoflurane-induced learning and memory, as well as the therapeutic methods in mouse model. Our results indicated that isoflurane induced the ferroptosis in a dose-dependent and time-dependent manner in hippocampus, the organ related with learning and memory ability. In addition, the activity of cytochrome c oxidase/Complex IV in mitochondrial electron transport chain (ETC) was increased by isoflurane, which might further contributed to cysteine deprivation-induced ferroptosis caused by isoflurane exposure. More importantly, isoflurane-induced ferroptosis could be rescued by both ferroptosis inhibitor (ferrostatin-1) and mitochondria activator (dimethyl fumarate), which also showed effective therapeutic action against isoflurane-induced learning and memory impairment. Taken together, our data indicate the close association among ferroptosis, mitochondria and isoflurane, and provide a novel insight into the therapy mode against isoflurane-induced learning and memory impairment.


2021 ◽  
Vol 22 (8) ◽  
pp. 3956
Author(s):  
Yan Li ◽  
Tianyu Tang ◽  
Hae June Lee ◽  
Kiwon Song

Hepatocellular carcinoma (HCC) is a major histological subtype of primary liver cancer. Ample evidence suggests that the pathological properties of HCC originate from hepatic cancer stem cells (CSCs), which are responsible for carcinogenesis, recurrence, and drug resistance. Cold atmospheric-pressure plasma (CAP) and plasma-activated medium (PAM) induce apoptosis in cancer cells and represent novel and powerful anti-cancer agents. This study aimed to determine the anti-cancer effect of CAP and PAM in HCC cell lines with CSC characteristics. We showed that the air-based CAP and PAM selectively induced cell death in Hep3B and Huh7 cells with CSC characteristics, but not in the normal liver cell line, MIHA. We observed both caspase-dependent and -independent cell death in the PAM-treated HCC cell lines. Moreover, we determined whether combinatorial PAM therapy with various anti-cancer agents have an additive effect on cell death in Huh7. We found that PAM highly increased the efficacy of the chemotherapeutic agent, cisplatin, while enhanced the anti-cancer effect of doxorubicin and the targeted-therapy drugs, trametinib and sorafenib to a lesser extent. These findings support the application of CAP and PAM as anti-cancer agents to induce selective cell death in cancers containing CSCs, suggesting that the combinatorial use of PAM and some specific anti-cancer agents is complemented mechanistically.


1999 ◽  
Vol 161 (3) ◽  
pp. 357-364 ◽  
Author(s):  
A Ilieva ◽  
S Yuan ◽  
RN Wang ◽  
D Agapitos ◽  
DJ Hill ◽  
...  

The purpose of this study was to characterize the trophic effect of pancreatic duct cells on the islets of Langerhans. Ductal epithelium and islets were isolated from hamster pancreata. In addition, duct-conditioned medium (DCM) was prepared from primary duct cultures that had been passaged twice to remove other cellular elements. Three experimental groups were then established: Group 1, 100 islets alone; Group 2, 100 islets+80 duct fragments; and Group 3, 100 islets in 25% DCM. All tissues were embedded in rat tail collagen for up to 12 days and the influence of pancreatic ductal epithelium on islet cell survival was examined. By day 12, 20.6+/-3. 0% (S.E.M.) of the islets cultured alone developed central necrosis, compared with 6.7+/-2.0% of the islets co-cultured with ducts and 5.6+/-1.5% of the islets cultured in DCM (P<0.05). The presence of apoptotic cell death was determined by a TdT-mediated dUTP-biotin nick end labelling (TUNEL) assay and by a specific cell death ELISA. DNA fragmentation in islets cultured alone was significantly increased compared with islets cultured either in the presence of duct epithelium or in DCM (P<0.05). More than 80% of TUNEL-positive cells were situated in the inner 80% of the islet area, suggesting that most were beta-cells. DCM was analysed for known growth factors. The presence of a large amount of IGF-II (34 ng/ml) and a much smaller quantity of nerve growth factor (4 ng/ml) was identified. When the apoptosis studies were repeated to compare islets alone, islets+DCM and islets+IGF-II, the cell death ELISA indicated that IGF-II produced the same beneficial result as DCM when compared with islets cultured alone. We conclude that pancreatic ductal epithelium promotes islet cell survival. This effect appears to be mediated in a paracrine manner by the release of IGF-II from cells in the ductal epithelium.


Sign in / Sign up

Export Citation Format

Share Document