Challenges of Implementing Artificial Intelligence in Interventional Radiology

2021 ◽  
Vol 38 (05) ◽  
pp. 554-559
Author(s):  
Sina Mazaheri ◽  
Mohammed F. Loya ◽  
Janice Newsome ◽  
Mathew Lungren ◽  
Judy Wawira Gichoya

AbstractArtificial intelligence (AI) and deep learning (DL) remains a hot topic in medicine. DL is a subcategory of machine learning that takes advantage of multiple layers of interconnected neurons capable of analyzing immense amounts of data and “learning” patterns and offering predictions. It appears to be poised to fundamentally transform and help advance the field of diagnostic radiology, as heralded by numerous published use cases and number of FDA-cleared products. On the other hand, while multiple publications have touched upon many great hypothetical use cases of AI in interventional radiology (IR), the actual implementation of AI in IR clinical practice has been slow compared with the diagnostic world. In this article, we set out to examine a few challenges contributing to this scarcity of AI applications in IR, including inherent specialty challenges, regulatory hurdles, intellectual property, raising capital, and ethics. Owing to the complexities involved in implementing AI in IR, it is likely that IR will be one of the late beneficiaries of AI. In the meantime, it would be worthwhile to continuously engage in defining clinically relevant use cases and focus our limited resources on those that would benefit our patients the most.

Author(s):  
Chitra A. Dhawale ◽  
Kritika Dhawale ◽  
Rajesh Dubey

Artificial intelligence (AI) is going through its golden era. Most AI applications are indeed using machine learning, and it currently represents the most promising path to strong AI. On the other hand, deep learning, which is itself a kind of machine learning, is becoming more and more popular and successful at different use cases and is at the peak of developments by enabling more accurate forecasting and better planning for civil society, policymakers, and businesses. As a result, deep learning is becoming a leader in this domain. This chapter presents a brief review of ground-breaking advances in deep learning applications.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Pierre Auloge ◽  
Julien Garnon ◽  
Joey Marie Robinson ◽  
Sarah Dbouk ◽  
Jean Sibilia ◽  
...  

Abstract Objectives To assess awareness and knowledge of Interventional Radiology (IR) in a large population of medical students in 2019. Methods An anonymous survey was distributed electronically to 9546 medical students from first to sixth year at three European medical schools. The survey contained 14 questions, including two general questions on diagnostic radiology (DR) and artificial intelligence (AI), and 11 on IR. Responses were analyzed for all students and compared between preclinical (PCs) (first to third year) and clinical phase (Cs) (fourth to sixth year) of medical school. Of 9546 students, 1459 students (15.3%) answered the survey. Results On DR questions, 34.8% answered that AI is a threat for radiologists (PCs: 246/725 (33.9%); Cs: 248/734 (36%)) and 91.1% thought that radiology has a future (PCs: 668/725 (92.1%); Cs: 657/734 (89.5%)). On IR questions, 80.8% (1179/1459) students had already heard of IR; 75.7% (1104/1459) stated that their knowledge of IR wasn’t as good as the other specialties and 80% would like more lectures on IR. Finally, 24.2% (353/1459) indicated an interest in a career in IR with a majority of women in preclinical phase, but this trend reverses in clinical phase. Conclusions Development of new technology supporting advances in artificial intelligence will likely continue to change the landscape of radiology; however, medical students remain confident in the need for specialty-trained human physicians in the future of radiology as a clinical practice. A large majority of medical students would like more information about IR in their medical curriculum; almost a quarter of students would be interested in a career in IR.


Author(s):  
Thiyagarajan P.

Digitalization is the buzz word today by which every walk of our life has been computerized, and it has made our life more sophisticated. On one side, we are enjoying the privilege of digitalization. On the other side, security of our information in the internet is the most concerning element. A variety of security mechanisms, namely cryptography, algorithms which provide access to protected information, and authentication including biometric and steganography, provide security to our information in the Internet. In spite of the above mechanisms, recently artificial intelligence (AI) also contributes towards strengthening information security by providing machine learning and deep learning-based security mechanisms. The artificial intelligence (AI) contribution to cyber security is important as it serves as a provoked reaction and a response to hackers' malicious actions. The purpose of this chapter is to survey recent papers which are contributing to information security by using machine learning and deep learning techniques.


Author(s):  
Chitra A. Dhawale ◽  
Krtika Dhawale

Artificial Intelligence (AI) is going through its golden era by playing an important role in various real-time applications. Most AI applications are using Machine learning and it represents the most promising path to strong AI. On the other hand, Deep Learning (DL), which is itself a kind of Machine Learning (ML), is becoming more and more popular and successful at different use cases, and is at the peak of developments. Hence, DL is becoming a leader in this domain. To foster the growth of the DL community to a greater extent, many open source frameworks are available which implemented DL algorithms. Each framework is based on an algorithm with specific applications. This chapter provides a brief qualitative review of the most popular and comprehensive DL frameworks, and informs end users of trends in DL Frameworks. This helps them make an informed decision to choose the best DL framework that suits their needs, resources, and applications so they choose a proper career.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5526
Author(s):  
Andrew A. Gumbs ◽  
Isabella Frigerio ◽  
Gaya Spolverato ◽  
Roland Croner ◽  
Alfredo Illanes ◽  
...  

Most surgeons are skeptical as to the feasibility of autonomous actions in surgery. Interestingly, many examples of autonomous actions already exist and have been around for years. Since the beginning of this millennium, the field of artificial intelligence (AI) has grown exponentially with the development of machine learning (ML), deep learning (DL), computer vision (CV) and natural language processing (NLP). All of these facets of AI will be fundamental to the development of more autonomous actions in surgery, unfortunately, only a limited number of surgeons have or seek expertise in this rapidly evolving field. As opposed to AI in medicine, AI surgery (AIS) involves autonomous movements. Fortuitously, as the field of robotics in surgery has improved, more surgeons are becoming interested in technology and the potential of autonomous actions in procedures such as interventional radiology, endoscopy and surgery. The lack of haptics, or the sensation of touch, has hindered the wider adoption of robotics by many surgeons; however, now that the true potential of robotics can be comprehended, the embracing of AI by the surgical community is more important than ever before. Although current complete surgical systems are mainly only examples of tele-manipulation, for surgeons to get to more autonomously functioning robots, haptics is perhaps not the most important aspect. If the goal is for robots to ultimately become more and more independent, perhaps research should not focus on the concept of haptics as it is perceived by humans, and the focus should be on haptics as it is perceived by robots/computers. This article will discuss aspects of ML, DL, CV and NLP as they pertain to the modern practice of surgery, with a focus on current AI issues and advances that will enable us to get to more autonomous actions in surgery. Ultimately, there may be a paradigm shift that needs to occur in the surgical community as more surgeons with expertise in AI may be needed to fully unlock the potential of AIS in a safe, efficacious and timely manner.


Artificial intelligence (AI) and machine learning are at the moment measured to be the unique widespread inventions. Artificial Intelligence rummage-sale to stand an unbelievable conception from science fiction, but nowadays it’s flattering a day-to-day authenticity. On the other hand, a neural network emulates the procedure of actual neurons in the brain that are parquet the track near innovations in machine learning, baptised deep learning. Machine learning can cosiness us living cheerier, improved, and additional dynamic conscious, if the power of the Deep learning concepts and its proper utilization as an industrial revolution that harness mental and cognitive ability. Currently lots of research papers deal with the Artificial Intelligence of deep learning in various real time applications that includes intelligent gaming, smart driving, and environmental protection and so on. Irrespective of all applications an intelligent decision making must be done timely to improve the accuracy in one end and simultaneously on the other end to consume energy and system efficiency. This paper presents the various applications using deep learning efficiently by better decision making and also how to visualize the problems in order to take a conclusion for better solution. The analysis of such real time problems is done by logically in the form of using artificial neurons through supervised and unsupervised data.


2018 ◽  
Vol 15 (1) ◽  
pp. 6-28 ◽  
Author(s):  
Javier Pérez-Sianes ◽  
Horacio Pérez-Sánchez ◽  
Fernando Díaz

Background: Automated compound testing is currently the de facto standard method for drug screening, but it has not brought the great increase in the number of new drugs that was expected. Computer- aided compounds search, known as Virtual Screening, has shown the benefits to this field as a complement or even alternative to the robotic drug discovery. There are different methods and approaches to address this problem and most of them are often included in one of the main screening strategies. Machine learning, however, has established itself as a virtual screening methodology in its own right and it may grow in popularity with the new trends on artificial intelligence. Objective: This paper will attempt to provide a comprehensive and structured review that collects the most important proposals made so far in this area of research. Particular attention is given to some recent developments carried out in the machine learning field: the deep learning approach, which is pointed out as a future key player in the virtual screening landscape.


2020 ◽  
Vol 114 ◽  
pp. 242-245
Author(s):  
Jootaek Lee

The term, Artificial Intelligence (AI), has changed since it was first coined by John MacCarthy in 1956. AI, believed to have been created with Kurt Gödel's unprovable computational statements in 1931, is now called deep learning or machine learning. AI is defined as a computer machine with the ability to make predictions about the future and solve complex tasks, using algorithms. The AI algorithms are enhanced and become effective with big data capturing the present and the past while still necessarily reflecting human biases into models and equations. AI is also capable of making choices like humans, mirroring human reasoning. AI can help robots to efficiently repeat the same labor intensive procedures in factories and can analyze historic and present data efficiently through deep learning, natural language processing, and anomaly detection. Thus, AI covers a spectrum of augmented intelligence relating to prediction, autonomous intelligence relating to decision making, automated intelligence for labor robots, and assisted intelligence for data analysis.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3068
Author(s):  
Soumaya Dghim ◽  
Carlos M. Travieso-González ◽  
Radim Burget

The use of image processing tools, machine learning, and deep learning approaches has become very useful and robust in recent years. This paper introduces the detection of the Nosema disease, which is considered to be one of the most economically significant diseases today. This work shows a solution for recognizing and identifying Nosema cells between the other existing objects in the microscopic image. Two main strategies are examined. The first strategy uses image processing tools to extract the most valuable information and features from the dataset of microscopic images. Then, machine learning methods are applied, such as a neural network (ANN) and support vector machine (SVM) for detecting and classifying the Nosema disease cells. The second strategy explores deep learning and transfers learning. Several approaches were examined, including a convolutional neural network (CNN) classifier and several methods of transfer learning (AlexNet, VGG-16 and VGG-19), which were fine-tuned and applied to the object sub-images in order to identify the Nosema images from the other object images. The best accuracy was reached by the VGG-16 pre-trained neural network with 96.25%.


Sign in / Sign up

Export Citation Format

Share Document