Delivery of N-(Phosphonacetyl)-L-aspartic acid encapsulated in thermosensitive sterically stabilized liposomes into cultured KB cells via folate receptor

2000 ◽  
Vol 32 (4) ◽  
pp. 89-95
Author(s):  
Mohamed H. Gaber ◽  
D. Papahadjopoulos
1989 ◽  
Vol 260 (2) ◽  
pp. 401-411 ◽  
Author(s):  
A C Antony ◽  
M A Kane ◽  
S R Krishnan ◽  
R S Kincade ◽  
R S Verma

Membrane-associated folate (pteroylglutamate, PteGlu)-binding proteins (FBPs) play an important role as PteGlu-transport proteins in malignant and normal human cells. Since high extracellular folate (PteGlu) concentrations (EFC) profoundly influenced uptake and toxicity of the anti-PteGlu methotrexate in malignant KB cells, we studied human cells to determine additional mechanisms for PteGlu uptake when the EFC was varied. At low EFC (less than 10 nM), the predominant mechanism for folate uptake in mature erythrocytes was through binding to externally oriented FBPs which were quantitatively insignificant (4-6 orders of magnitude lower) and of no apparent physiological relevance when compared with KB cells. However, the predominant mechanism of PteGlu accumulation at high EFC [10-250 nM] in intact erythrocytes and sealed right-side-out (RSO) ghosts was not FBP-mediated and non-specific. This conclusion was based on the findings that radiolabelled PteGlu uptake: (i) continued even in the presence of a 1000-fold excess of unlabelled PteGlu and was linear and not saturable up to 250 nM; (ii) was two-fold higher at pH 4.5 than 7.5; (iii) was less than 2-fold increased at 37 degrees C compared with 4 degrees C; and (iv) was unaffected after trypsin-mediated proteolysis of greater than 75% FBPs. The [3H]PteGlu and 125I-PteGlu (histamine derivative) accumulated intracellularly through the non-specific PteGlu-uptake mechanism was unaltered biochemically and in a soluble compartment. Raising the EFC 500-fold higher than controls during erythropoiesis in vitro resulted in reversal of the expected anti-(placental folate-receptor)-antiserum-induced megaloblastic changes in orthochromatic normoblasts derived from burst-forming unit-erythroid colonies. Furthermore, at EFC greater than 0.1 microM, KB-cell accumulation of [3H]PteGlu was also predominantly through a mechanism that did not involve specific FBPs. Thus, at high EFC, a major component of PteGlu transport in human cells is not mediated through FBPs and is likely to be a passive diffusion process.


Blood ◽  
1999 ◽  
Vol 93 (11) ◽  
pp. 3940-3948 ◽  
Author(s):  
Joseph A. Reddy ◽  
Laura S. Haneline ◽  
Edward F. Srour ◽  
Asok C. Antony ◽  
D. Wade Clapp ◽  
...  

We have investigated the expression and functional competence of folate receptor (FR) isoforms on human hematopoietic cells. Using immunofluorescence and reverse transcriptase-polymerase chain reaction (RT-PCR) methodology, we find that a substantial fraction of low-density mononuclear and CD34+ cells express both the β and γ isoforms of FR. The  isoform of FR (the form most commonly found on cancer cells) was surprisingly absent from all hematopoietic cells examined. Compared with KB cells (a human cell line known for its elevated expression of FR-), the abundance of FR-β on CD34+ cell surfaces was relatively low (≈8% of KB cell levels). Because many antifolates and folic acid-linked chemotherapeutic agents enter malignant cells at least partially via FR endocytosis, it was important to evaluate the ability of FR on CD34+ cells to bind folic acid (FA). Based on three FR binding assays, freshly isolated CD34+ cells were found to display no affinity for FA. Thus, regardless of whether steps were taken to remove endogenous folates before receptor binding assays, FR on primitive hematopoietic cells failed to bind 3H-FA, fluorescein isothiocyanate (FITC)-linked FA, or FA-derivatized liposomes. In contrast, analogous studies on KB cells showed high levels of receptor binding for all three FR probes. These studies show that although multipotent hematopoietic progenitor cells express FR, the receptor does not transport significant amounts of FA. Consequently, antifolates and FA-linked chemotherapeutic agents that can be engineered to enter malignant cells exclusively through the FR should not harm progenitor/stem cell function.


2008 ◽  
Vol 8 (6) ◽  
pp. 3085-3090 ◽  
Author(s):  
Akihiro Hayama ◽  
Tatsuhiro Yamamoto ◽  
Masayuki Yokoyama ◽  
Kumi Kawano ◽  
Yoshiyuki Hattori ◽  
...  

A novel technique was developed for the formation of ligand-targeted polymeric micelles that can be applicable to various ligands. For tumor-specific drug delivery, camptothecin (CPT)-loaded polymeric micelles were modified by folate to produce a folate-receptor-targeted drug carrier. Folate-linked PEG5000-distearoylphosphatidylethanolamine (folate-PEG5000-DSPE) was added when preparations of drug-loaded polymeric micelles, resulting in folate ligands exposed to the surface. Folate-modified CPT-loaded polymeric micelles (F-micelle) were evaluated by measuring cellular uptake using a flow cytometer, fluorescence microscopy, and confocal laser scanning microscopy, and by cytotoxicity measurement. The results revealed that F-micelle showed higher cellular uptake in KB cells over-expressing folate receptor (FR) and higher cytotoxicity compared with non-folate modified CPT-loaded polymeric micelles (plain micelles) in KB cells, but not in FR-negative HepG2 cells. This result indicated that polymeric micelles were successfully modified by the folate-linked lipid.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Ming Wang ◽  
Meiling Huang ◽  
Jianting Wang ◽  
Mingquan Ye ◽  
Yan Deng ◽  
...  

The self-assembled folate-biotin-pullulan (FBP) nanoparticles (NPs) were prepared by facile one-pot synthesis and their physicochemical properties were characterized. The self-assembled FBP NPs were used as an anticancer drug nanocarrier entrapping doxorubicin (DOX) for targeting folate-receptors-overexpressing cancer cells. The identification of prepared NPs to folate-receptor-expressing cancer cells (KB cells) was affirmed by cell viability measurement, folate competition test, and flow cytometric analysis. Compared with the naked DOX and DOX/BP NPs, the DOX/FBP NPs had lower IC50value compared to KB cells as a result of the folate-receptor-mediated endocytosis process. The cytotoxicity of DOX/FBP NPs to KB cells could be inhibited competitively by free folate. The cellular intake pattern of naked DOX and drug-loaded NPs was identified by confocal laser scanning microscopy (CLSM) observation and the higher cellular uptake of drug for DOX/FBP NPs over naked DOX was observed. The prepared FBP NPs had the potential to be used as a powerful carrier to target anticancer drugs to folate-receptor-expressing tumor cells and reduce cytotoxicity to normal tissues.


1989 ◽  
Vol 274 (2) ◽  
pp. 327-337 ◽  
Author(s):  
John C. Deutsch ◽  
Patrick C. Elwood ◽  
Raul M. Portillo ◽  
Michelle G. Macey ◽  
J.Fred Kolhouse

2009 ◽  
Vol 96 (3) ◽  
pp. 282a-283a
Author(s):  
Jacob A. Hale ◽  
Scott Poh ◽  
Sumith Kularatne ◽  
Philip S. Low ◽  
Kenneth P. Ritchie

Sign in / Sign up

Export Citation Format

Share Document