Regulation of Oxytocin Receptors and Oxytocin Receptor Signaling

2007 ◽  
Vol 25 (1) ◽  
pp. 052-059 ◽  
Author(s):  
Andrew Blanks ◽  
Anatoly Shmygol ◽  
Steven Thornton
2005 ◽  
Vol 10 (3) ◽  
pp. 221-229 ◽  
Author(s):  
Alessandra Reversi ◽  
Paola Cassoni ◽  
Bice Chini

1996 ◽  
Vol 151 (3) ◽  
pp. 375-393 ◽  
Author(s):  
D C Wathes ◽  
G E Mann ◽  
J H Payne ◽  
P R Riley ◽  
K R Stevenson ◽  
...  

Abstract The regulation of oxytocin, oestradiol and progesterone receptors in different uterine cell types was studied in ovariectomized ewes. Animals were pretreated with a progestogen sponge for 10 days followed by 2 days of high-dose oestradiol to simulate oestrus. They then received either low-dose oestradiol (Group E), low-dose oestradiol plus progesterone (Group P) or low-dose oestradiol, progesterone and oxytocin (via osmotic minipump; Group OT). Animals (three to six per time-point) were killed following ovariectomy (Group OVX), at oestrus (Group O) or following 8, 10, 12 or 14 days of E, P or OT treatment. In a final group, oxytocin was withdrawn on day 12 and ewes were killed on day 14 (Group OTW). Oxytocin receptor concentrations and localization in the endometrium and myometrium were measured by radioreceptor assay, in situ hybridization and autoradiography with the iodinated oxytocin receptor antagonist d(CH2)5[Tyr(Me)2,Thr4,Tyr-NH29]-vasotocin. Oestradiol and progesterone receptors were localized by immunocytochemistry. Oxytocin receptors were present in the luminal epithelium and superficial glands of ovariectomized ewes. In Group O, endometrial oxytocin receptor concentrations were high (1346 ± 379 fmol [3H]oxytocin bound mg protein−1) and receptors were also located in the deep glands and caruncular stroma in a pattern resembling that found at natural oestrus. Continuing low-dose oestradiol was unable to sustain high endometrial oxytocin receptor concentrations with values decreasing significantly to 140 ± 20 fmol mg protein−1 (P<0·01), localized to the luminal epithelium and caruncular stroma but not the glands. Progesterone treatment initially abolished all oxytocin receptors with none present on days 8 or 10. They reappeared in the luminal epithelium only between days 12 and 14 to give an overall concentration of 306 ± 50 fmol mg protein−1. Oxytocin treatment caused a small increase in oxytocin receptor concentration in the luminal epithelium on days 8 and 10 (20 ± 4 in Group P and 107 ± 35 fmol mg protein−1 in Group OT, P<0·01) but the rise on day 14 was not affected (267 ± 82 in Group OT and 411 ± 120 fmol mg protein−1 in Group OTW). In contrast, oestradiol treatment was able to sustain myometrial oxytocin receptors (635 ± 277 fmol mg protein−1 in Group O and 255 ± 36 in Group E) and there was no increase over time in Groups P, OT and OTW with values of 61 ± 18, 88 ± 53 and 114 ± 76 fmol mg protein−1 respectively (combined values for days 8–14). Oestradiol receptor concentrations were high in all uterine regions in Group O. This pattern and concentration was maintained in Group E. In all progesterone-treated ewes, oestradiol receptor concentrations were lower in all regions at all time-points. The only time-related change occurred in the luminal epithelium in which oestradiol receptors were undetectable on day 8 but developed by day 10 of progesterone treatment. Progesterone receptors were present at moderate concentrations in the deep glands, caruncular stroma, deep stroma and myometrium in Group O. Oestradiol increased progesterone receptors in the luminal epithelium, superficial glands, deep stroma and myometrium. Progesterone caused the loss of its own receptor from the luminal epithelium and superficial glands and decreased its receptor concentration in the deep stroma and myometrium at all time-points. There was a time-related loss of progesterone receptors from the deep glands of progesterone-treated ewes between days 8 and 14. These results show differences in the regulation of receptors between uterine regions. In particular, loss of the negative inhibition by progesterone on the oxytocin receptor by day 14 occurred only in the luminal epithelium, but is unlikely to be a direct effect of progesterone as no progesterone receptors were present on luminal epithelial cells between days 8 and 14. The presence of oxytocin receptors in the luminal epithelium of ovariectomized ewes suggests that oestradiol is not essential for oxytocin receptor synthesis at this site. Oestradiol was able to sustain its own receptor at all sites, but high circulating progesterone was always inhibitory to oestradiol receptors. In general, oestradiol stimulated progesterone receptors in epithelial cells whereas progesterone abolished its own receptor from epithelial cells over a period of time, but had a lesser effect on stromal cells. The concentration of all three receptors is therefore differentially regulated between different uterine cell types, suggesting the importance of paracrine effects which remain to be elucidated. Journal of Endocrinology (1996) 151, 375–393


1994 ◽  
Vol 12 (1) ◽  
pp. 93-105 ◽  
Author(s):  
K R Stevenson ◽  
P R Riley ◽  
H J Stewart ◽  
A P F Flint ◽  
D C Wathes

ABSTRACT A synthetic 45-mer oligonucleotide corresponding to part of the ovine endometrial oxytocin receptor cDNA was hybridized to sections of ovine uterus collected from 40 ewes at different stages during the oestrous cycle, the first 3 weeks of pregnancy and seasonal anoestrus. The quantity of oxytocin receptor mRNA was measured as the optical density (OD) value on autoradiographs using image analysis. Message first appeared in the luminal epithelium on days 14–15 of the cycle, increasing to a peak OD of 0·48 at oestrus and decreasing again between days 2 and 5. Oxytocin receptor mRNA in the superficial glands, deep glands and caruncular stroma increased between day 15 and oestrus to peak OD values of 0·17, 0·11 and 0·11 respectively, declining again by day 2 and reaching basal values (OD<0·015) by day 5. Hybridization to the myometrium tended to rise from a mean OD value of 0·01 on days 2–15 to a peak of 0·03±0·01 (mean±s.e.m.) on days 0–1, but the change was not significant. In pregnant ewes there was no detectable oxytocin receptor mRNA on days 14–15 in any region, but hybridization to the luminal epithelium was present in two of three ewes on day 21. In anoestrous ewes oxytocin receptor mRNA concentrations in all areas of the endometrium were approximately half those measured at oestrus. Optical density readings for oxytocin receptor mRNA in the various uterine compartments were compared with measurements of oxytocin receptors in the same regions as assessed by binding studies using the 125I-labelled oxytocin antagonist d(CH2)5[Tyr(Me)2,Thr4,Tyr-NH29]-vasotocin (125I-labelled OTA). In the endometrium, receptor mRNA and 125I-labelled OTA binding patterns changed in parallel, and both sets of measurements were significantly correlated (P<0·01). In the myometrium, a significant increase in 125I-labelled OTA binding occurred at oestrus; this was not accompanied by a similar increase in oxytocin receptor mRNA hybridization. This study helps to confirm that the previously identified cDNA clone is derived from the ovine oxytocin receptor, as patterns of oxytocin receptor mRNA expression in the endometrium closely resembled those of oxytocin binding. Maximum expression and binding both occurred at oestrus, suggesting that regulation of the oxytocin receptor gene in the uterus occurs principally at the transcriptional, rather than at the translational, level. Failure to detect a significant increase in myometrial mRNA expression at oestrus may indicate that the endometrial and myometrial oxytocin receptors are of different isoforms.


1983 ◽  
Vol 61 (7) ◽  
pp. 631-635 ◽  
Author(s):  
Melvyn S. Soloff ◽  
Michael H. Wieder

Oxytocin-receptor concentrations in the rat mammary gland were determined by Scatchard analyses with [3H]oxytocin. There was about a 100-fold increase in the number of receptors per mammary gland between the 1st day of pregnancy and late lactation. The number of receptors then fell markedly during postweaning mammary regression, but rose again during a second pregnancy and lactation cycle. The changes in oxytocin-receptor number corresponded to changes in alkaline phosphatase activity per mammary gland. These results strongly support data suggesting that alkaline phosphatase, like oxytocin receptors, is a specific marker for mammary myoepithelial cells. Despite the fall in oxytocin-receptor number per mammary gland during postweaning regression, the concentration of receptors, expressed per milligram of protein, increased 10-fold over lactating levels on the 6th day of regression. Thereafter, receptor concentrations declined, but were still elevated about fivefold over lactating levels on the 15th day of regression. It is likely that the increased concentration of receptors was due to a decrease in the relative amount of nontarget secretory cells. The factors that regulate the concentration of oxytocin receptors on mammary myoepithelial cells are presently unknown; however, the involuting mammary system may be practical for obtaining enriched populations of oxytocin-sensitive myoepithelial cells.


1983 ◽  
Vol 61 (7) ◽  
pp. 615-624 ◽  
Author(s):  
A.-R. Fuchs ◽  
S. Periyasamy ◽  
M. S. Soloff

Rats were made unilaterally pregnant by tying the right oviduct on the day after mating, to compare the oxytocin receptor concentrations in a nondistended, nonpregnant uterine horn with those in a distended, pregnant horn. On day 20, they were subjected to bilateral ovariectomy and indwelling balloons were inserted into both uterine horns. Following ovariectomy, the rats were injected im with either oil, estradiol benzoate (5 μg/rat per 24 h), progesterone (5 mg/rat per 24 h), or estradiol and progesterone together. For comparison, intact rats were studied on days 21 and 22, 24 and 48 h after insertion of the indwelling balloons. Spontaneous uterine activity and the response to increasing amounts of oxytocin were recorded 20–24 h and 44–48 h after surgery, following which the uteri were excised and assayed for oxytocin and estrogen receptors. The oxytocin receptor concentrations in the two horns were different on day 20 before the treatments were begun, the distended pregnant horn having a higher concentration per milligram DNA than the nonpregnant horn. The various treatments always changed the oxytocin receptor concentrations in the same direction; estrogen increased and progesterone inhibited the estrogen-induced rise in oxytocin receptor concentrations. In intact rats, the distention-induced increase in oxytocin receptor concentrations present on day 20 disappeared near term, but in the absence of the ovaries distention of the uterus had a significant influence on the myometrial oxytocin receptor concentrations, potentiating the effect of estrogen. Progesterone selectively inhibited the distention-induced increase in oxytocin receptor concentrations without inhibiting the hypertrophic effect of distention in general. A good correlation between oxytocin receptor numbers and tissue responsiveness was observed in all instances. The changes in spontaneous activity induced by the various treatments were distinct from the changes in oxytocin responsiveness. Estrogen exerted a strong inhibitory action on the activity stimulated by hormone withdrawal, while progesterone had no inhibitory effect. The pregnant distended horn always showed more spontaneous activity than the nonpregnant horn. There was an overall significant correlation between nuclear estrogen receptor and oxytocin receptor concentrations per milligram DNA, although the partial correlations were not significant in all groups (oil and progesterone). It is concluded that ovarian hormones exert the major regulatory influence on myometrial oxytocin receptor concentrations, but other factors including distention modulate their effect.


Author(s):  
Mark Gottlieb

This paper develops mathematical models examining possible roles of oxytocin and oxytocin receptors in the development of autism. This is done by demonstrating that mathematical operations on normalized data from the Stanford study (K.J. Parker, 2016), which establishes a correspondence between severity of autism in children and their oxytocin blood levels, generates a graph that is the same as the graph of mathematical operations on a normalized theoretical model for the severity of autism. This procedure establishes the validity of the theoretical model and the significance of oxytocin receptors in autism. A steady-state model follows, explaining the constant baseline concentrations of oxytocin observed in the cerebral spinal fluid and blood in terms of the neuromodulation by oxytocin of oxytocin receptors on the magnocellular neurons that produce oxytocin in nuclei in the hypothalamus. &nbsp;The implications of these models for possible roles of oxytocin and oxytocin receptors in autism is considered for several unrelated conditions that may be associated with autism. These are: oxytocin receptor desensitization and down-regulation as factors during labor in offspring autism development; reductions in the oxytocin receptor numbers in the fixed oxytocin receptor expression that occurs before birth; MAST Immune System disease; and the excess number of dendritic spines from lack of pruning observed in brains of autistic people. Research into the feasibility of generating magnocellular neurons and other neurons from adult stem cells is suggested as a way of doing invitro studies of oxytocin and oxytocin receptors to assess the validity of theories presented in this paper.


2008 ◽  
Vol 295 (6) ◽  
pp. E1495-E1501 ◽  
Author(s):  
Angela Szeto ◽  
Daniel A. Nation ◽  
Armando J. Mendez ◽  
Juan Dominguez-Bendala ◽  
Larry G. Brooks ◽  
...  

Oxytocin is synthesized and released in the heart and vasculature, tissues that also express oxytocin receptors. Although it has been established this intrinsic cardiovascular oxytocin system is important in normal homeostatic cardiac and vascular regulation, a role for this system in cardiovascular pathophysiology has not been investigated. The current study examined the influence of oxytocin on mechanisms in atherogenesis, oxidative stress, and inflammation in cultured human vascular cells, THP-1 monocytes, and macrophages. Oxytocin receptor protein and mRNA expression, NADPH-dependent superoxide activity, and interleukin-6 secretion were measured. Results demonstrated oxytocin receptor protein and mRNA in THP-1 monocytes and macrophages. Incubation of cells at physiological levels of oxytocin significantly decreased basal and stimulated NADPH-dependent superoxide activity in vascular cells, monocytes, and macrophages by 24–48%. Oxytocin also attenuated interleukin-6 secretion from stimulated THP-1 macrophages and endothelial cells by 56 and 26%, respectively. These findings suggest that oxytocin attenuates vascular oxidative stress and inflammation, two important pathophysiological processes in atherosclerosis. The fact that oxytocin receptors are found in monocytes and macrophages, and oxytocin decreases both superoxide production and release of a proinflammatory cytokine from these cells, suggests a potentially larger role for oxytocin in the attenuation of disease.


1991 ◽  
Vol 128 (2) ◽  
pp. 187-NP ◽  
Author(s):  
V. J. Ayad ◽  
S. E. F. Guldenaar ◽  
D. C. Wathes

ABSTRACT Some of the binding characteristics of a novel oxytocin receptor ligand 125I-labelled [1-(β-mercapto-β, β-cyclopentamethylene propionic acid), 2-(ortho-methyl)-Tyr2,Thr4,Orn8,Tyr9-NH2]-vasotocin ([125I]OTA) have been determined in the sheep uterus. The compound was subsequently used for the autoradiographic localization of oxytocin receptors in the uterus and oviduct of the ewe. Specific binding of [125I]OTA to crude membrane fractions of ovine endometrium was time-dependent and was unaffected by the addition of cations to incubation media. Endometrial membranes contained a single population of saturable, high-affinity binding sites for the iodinated ligand (dissociation constant (Kd) 0·23±0·08 nmol/l) and unlabelled oxytocin competed with [125I]OTA for binding sites with high affinity (Kd 1·29±0·4 nmol/l) in the presence of Mg2+ In contrast, unlabelled OTA was able to compete with high affinity (Kd 1·13±0·16 nmol/l) in the absence of cation. Competition studies with a number of oxytocin analogues and related peptides and the tissue distribution of [125I]OTA binding sites also indicated that [125I]OTA bound to the ovine oxytocin receptor. This was further validated by autoradiographic studies which showed specific labelling with [125I]OTA to be greater to uterus and oviduct obtained from ewes which had been killed within 2 days of oestrus than to similar tissue from ewes killed during the luteal phase. In both the ampullary and isthmic regions of the oviduct and the myometrium, [125I]OTA binding sites were confined to smooth muscle. Endometrial binding sites for [125I]OTA were consistently located on the luminal epithelium and epithelial cells lining secretory glands. In addition, in one ewe which had been killed 2 days after cloprostenol treatment, stromal cells were labelled in a caruncular region of the endometrium. The consistency of this observation between similar animals remains to be determined. The autoradiographic technique demonstrated appears sufficiently sensitive to allow further studies into the distribution of the endometrial oxytocin receptor throughout the oestrous cycle, and into its regulation at luteolysis and during the establishment of pregnancy. Journal of Endocrinology (1991) 128, 187–195


1992 ◽  
Vol 4 (3) ◽  
pp. 321 ◽  
Author(s):  
G Jenkin

The pulsatile release of oxytocin from the corpus luteum in the sheep is responsible for the pulsatile release of prostaglandin F2 alpha (PGF2 alpha) from the uterus at luteolysis. It has been proposed that PGF2 alpha also reinforces this process by stimulating the release of oxytocin from the corpus luteum. It is, however, unlikely that PGF2 alpha is the major stimulus for oxytocin release at this time. Although the stimulus for the pulsatile release of oxytocin from the corpus luteum appears to reach the ovary from the peripheral circulation, the nature of the stimulus is unknown. Pulses of oxytocin originating from the corpus luteum have also been observed during early pregnancy, but the release of PGF2 alpha, in response to this signal, is abrogated in some way by ovine trophoblast protein-1 (oTP-1). This protein has been shown to inhibit endometrial prostaglandin production and to decrease the amount of PGF2 alpha released in response to oxytocin. Reduction of uterine oxytocin receptor concentrations by conceptus secretory proteins or by interferons related to oTP-1 remains equivocal. Inhibition of uterine oxytocin receptors is, however, probably the major mechanism that prevents luteal regression during early pregnancy. In cyclic sheep the specific inhibition of uterine oxytocin receptors by 1-deamino-2-D-Try (oET)-4-Thr-8-Orn-oxytocin (CAP), a synthetic oxytocin receptor antagonist, inhibits luteal regression and suppresses pulsatile, but not basal, secretion of uterine PGF2 alpha. Thus, the effects of CAP directly parallel the endocrinological changes that occur in early pregnancy in the sheep.


2021 ◽  
Vol 89 (9) ◽  
pp. S93
Author(s):  
Kristen Berendzen ◽  
Ruchira Sharma ◽  
Amanda Everitt ◽  
Rose Larios ◽  
Gina Williams ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document