Protection of quercetin against ethanol-induced human hepatotoxicity is regulated is regulated via HO–1/CO system through MAPK/Nrf2 pathway

2008 ◽  
Vol 46 (01) ◽  
Author(s):  
D Knobeloch ◽  
L Hao ◽  
N Nüssler ◽  
P Yao ◽  
A Lehmann ◽  
...  
Keyword(s):  
2017 ◽  
Vol 27 (4) ◽  
pp. 27
Author(s):  
Zhaorong CHEN ◽  
Xiaoping CHENG ◽  
Jianfeng CHU ◽  
Jun PENG ◽  
Wei LIN

Author(s):  
Umme Hani ◽  
Shivananda Kandagalla ◽  
B.S. Sharath ◽  
K Jyothsna. ◽  
H Manjunatha.

: Hsp90 are molecular chaperones of chronic inflammatory proteins and have emerged as prime target for treatment of inflammation. Principal components from Curcuma longa and Camellia sinensis, Curcumin and EGC respectively possesses anti-inflammatory properties inhibiting cytokines responsible for inflammation. Both act on common pathways in upregulation of heme oxygenase 1 through Pkcδ-Nrf2 pathway and downregulation of Tlr4, which in turn suppress expression of Hsp90. Curcumin and EGC were also found to bind -N and -C terminal domain of Hsp90 respectively. Based on this, work was designed with network pharmacological approach. Hsp90 associated gene targets of Curcumin and EGC were collected from databases, and gene ontology studies were done. PPI were obtained from string database for specific genes involved in Pkcδ-Nrf2 and Tlr4 pathway. Protein interaction network was constructed by cytoscape, and networks of Hsp90, Curcumin and EGC were merged to get common genes involved in Pkcδ-Nrf2 and Tlr4 pathway. Cluego analysis was done for obtained common genes to identify functional behavior in human diseases. Main proteins involved were identified as key regulators in Pkcδ-Nrf2 and Tlr4 pathway for controlling expression of Hsp90 from Curcumin and EGC in inflammation. Docking was performed on main proteins, Hsp90, Pkcδ and Tlr4 with Curcumin and EGC, significant binding energy was obtained for docked complexes. Combinatorial effects of Curcumin and EGC were observed in Pkcδ-Nrf2 and Tlr4pathway. Present study is an attempt to unravel common pathways mediated in intervention of Curcumin and EGC for suppression of Hsp90 associated with inflammation.


2021 ◽  
Vol 11 (6) ◽  
Author(s):  
Ning Yang ◽  
Houyi Sun ◽  
Yi Xue ◽  
Weicheng Zhang ◽  
Hongzhi Wang ◽  
...  
Keyword(s):  

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Liu Tongqiang ◽  
Liu Shaopeng ◽  
Yu Xiaofang ◽  
Song Nana ◽  
Xu Xialian ◽  
...  

Contrast-induced acute renal injury (CI-AKI) has become a common cause of hospital-acquired renal failure. However, the development of prophylaxis strategies and approved therapies for CI-AKI is limited. Salvianolic acid B (SB) can treat cardiovascular-related diseases. The aim of the present study was to assess the effect of SB on prevention of CI-AKI and explore its underlying mechanisms. We examined its effectiveness of preventing renal injury in a novel CI-AKI rat model. Compared with saline, intravenous SB pretreatment significantly attenuated elevations in serum creatinine and the histological changes of renal tubular injuries, reduced the number of apoptosis-positive tubular cells, activated Nrf2, and lowered the levels of renal oxidative stress induced by iodinated contrast media. The above renoprotection of SB was abolished by the PI3K inhibitor (wortmannin). In HK-2 cells, SB activated Nrf2 and decreased the levels of oxidative stress induced by hydrogen peroxide and subsequently improved cell viability. The above cytoprotection of SB was blocked by the PI3K inhibitor (wortmannin) or siNrf2. Thus, our results demonstrate that, due to its antioxidant properties, SB has the potential to effectively prevent CI-AKI via the PI3K/Akt/Nrf2 pathway.


Sign in / Sign up

Export Citation Format

Share Document