Sorption of Organic Compounds in the Aqueous Phase onto Tire Rubber

1997 ◽  
Vol 123 (9) ◽  
pp. 827-835 ◽  
Author(s):  
Jae Y. Kim ◽  
Jae K. Park ◽  
Tuncer B. Edil
2017 ◽  
Vol 36 (1-2) ◽  
pp. 327-342 ◽  
Author(s):  
Andrea Luca Tasca ◽  
Farnaz Ghajeri ◽  
Ashleigh J Fletcher

Very few studies have investigated the adsorption performance of hydrophobic and hydrophilic silicas with dissolved organics in water, which is a required final step during produced water treatment. The cost of functionalization also hinders the use of hydrophobic materials as sorbents. Novel hydrophilic silicas, prepared at low temperature and ambient pressure, were characterised by SEM, FTIR and BET analysis, and studied for the adsorption of aqueous phase organic compounds at concentrations below their solubility limits. Adsorption capacities were found to be up to 264 mg/g for benzene and 78.8 mg/g for toluene. Direct comparison is made with the analogous hydrophobic version of one of the silica materials, demonstrating comparable uptakes for benzene concentrations lower than 50 mg/L. This finding supports the hypothesis that, at very low aqueous phase organic concentrations, hydrophobicization has no discernible effect on access of the pollutants to the internal porosity of the material.


2002 ◽  
Vol 45 (9) ◽  
pp. 103-110 ◽  
Author(s):  
J.A. Pedersen ◽  
M.A. Yeager ◽  
I.H. Suffet

Investigations of agricultural chemicals in surface runoff typically target nutrients or specific pesticides; however, numerous other organic compounds are regularly applied to agricultural fields in pesticide formulations, irrigation water, soil amendments and fertilizers. Many of these compounds have toxicological significance. We conducted a broad spectrum analysis of surface runoff from individual irrigated agricultural fields in coastal southern California to characterize organic compounds amenable to analysis by gas chromatography-mass spectrometry and to estimate the mass flux of selected chemicals. Aqueous phase extracts contained several pesticides, as well as personal care product ingredients and pharmaceutically active compounds apparently derived from treated wastewater used for irrigation. Several compounds potentially associated with pesticide adjuvants were also present in aqueous phase extracts. Dissolved NOM constituents in water phase extracts included n-fatty acids, aliphatic alcohols and plant terpenoids. Tentatively identified compounds sorbed to suspended particles included pesticides, a fecal sterol, aliphatic and alicyclic hydrocarbons, aliphatic alcohols, aldehydes, and C14 and C16n-fatty acids and fatty acid esters. Bicyclic and polycyclic aromatic hydrocarbons were identified in both aqueous and suspended particle phases. Constituent concentrations, including total suspended solids (TSS), varied over the course of the sampled events by up to an order of magnitude, and typically were not correlated with flow. Variation in sorbed organic compound concentrations often did not parallel those for TSS concentration. Mass load estimates were strongly influenced by the choice of sampling interval.


2016 ◽  
Author(s):  
Yan-Lin Zhang ◽  
Kimitaka Kawamura ◽  
Ping Qing Fu ◽  
Suresh K. R. Boreddy ◽  
Tomomi Watanabe ◽  
...  

Abstract. Vertical profiles of low molecular weight dicarboxylic acids, related organic compounds and SOA tracer compounds in particle phase have not yet been simultaneously explored in East Asia, although there is growing evidence that aqueous phase oxidation of volatile organic compounds may be responsible for the elevated organic aerosols (OA) in the free troposphere. Here, we found consistently good correlation of oxalic acid, the most abundant organics globally, with its precursors as well as biogenic-derived secondary OA (SOA) compounds in Chinese tropospheric aerosols by aircraft measurements. Anthropogenically derived dicarboxylic acids (i.e., C5 and C6 diacids) at high altitudes were 4–20 times higher than those from surface measurements and even occasionally dominant over oxalic acid at altitude higher than 2 km, which is in contrast to the predominance of oxalic acid previously reported globally including the tropospheric and surface aerosols. This indicates an enhancement of tropospheric SOA formation from anthropogenic precursors. Furthermore, oxalic acid-tosulfate ratio maximized at altitude of ~2 km, explaining aqueous-phase SOA production that was supported by good correlations with predicted liquid water content, organic carbon and biogenic SOA tracers. These results demonstrate that elevated oxalic acid and related SOA compounds from both the anthropogenic and biogenic sources may substantially contribute to tropospheric OA burden over polluted regions of China, implying aerosol-associated climate effects and intercontinental transport.


2019 ◽  
Author(s):  
Ahmad J. Rusumdar ◽  
Andreas Tilgner ◽  
Ralf Wolke ◽  
Hartmut Herrmann

Abstract. Tropospheric deliquesced particles are characterised by concentrated non-ideal solutions (aerosol liquid water or ALW) that can affect the occurring multiphase chemistry. However, such non-ideal solution effects have generally not yet been considered in and investigated by current complex multiphase chemistry models in an adequate way. Therefore, the present study aims at accessing the impact of non-ideality on multiphase chemical processing in concentrated aqueous aerosols. Simulations with the multiphase chemistry model (SPACCIM-SpactMod) are performed in different environmental and microphysical conditions with and without a treatment of non-ideal solutions in order to assess its impact on aqueous-phase chemical processing. The present study shows that activity coefficients of inorganic ions are often below unity under 90 % RH-deliquesced aerosol conditions, and that most uncharged organic compounds exhibit activity coefficient values of around or even above unity. Due to this behaviour, model studies have revealed that the inclusion of non-ideality considerably affects the multiphase chemical processing of transition metal ions (TMIs), oxidants, and related chemical subsystems such as organic chemistry. In detail, both the chemical formation and oxidation fluxes of Fe(II) are substantially lowered by a factor of 2.8 in the non-ideal base case compared to the ideal case. The reduced Fe(II) processing in the non-ideal base case, including lowered chemical fluxes of the Fenton reaction (−70 %), leads to a reduced processing of HOx/HOy. under deliquesced aerosol conditions. Consequently, higher multiphase H2O2 concentrations (larger by a factor of 3.1) and lower aqueous-phase OH concentrations (lower by a factor of ≈ 4) are modelled during non-cloud periods. For H2O2, a comparison of the chemical reaction fluxes reveals that the most important sink, the reaction with HSO3−, contributes with a 40 % higher flux in the non-ideal base case than in the ideal case, leading to more efficient sulfate formation. On the other hand, the chemical fluxes of the OH radical are about 50 % lower in the non-ideal base case than in the ideal case, including lower degradation fluxes of organic aerosol components. Thus, considering non-ideality influences the chemical processing and the concentrations of organic compounds under deliquesced particle conditions in a compound-specific manner. For example, the reduced oxidation budget under deliquesced particle conditions leads to both increased and decreased concentration levels, e.g. of important C2/C3 carboxylic acids. For oxalic acid, the present study demonstrates that the non-ideality treatment enables more realistic predictions of high oxalate concentrations than observed under ambient highly polluted conditions. Furthermore, the simulations implicate that lower humidity conditions, i.e. more concentrated solutions, might promote higher oxalic acid concentration levels in aqueous aerosols due to differently affected formation and degradation processes.


Sign in / Sign up

Export Citation Format

Share Document