Instantaneous Unit Hydrograph Evaluation for Rainfall-Runoff Modeling of Small Watersheds in North and South Central Texas

2006 ◽  
Vol 132 (5) ◽  
pp. 479-485 ◽  
Author(s):  
Theodore G. Cleveland ◽  
Xin He ◽  
William H. Asquith ◽  
Xing Fang ◽  
David B. Thompson
Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3447
Author(s):  
Kee-Won Seong ◽  
Jang Hyun Sung

A methodology named the step response separation (SRS) method for deriving S-curves solely from the data for basin runoff and the associated instantaneous unit hydrograph (IUH) is presented. The SRS method extends the root selection (RS) method to generate a clearly separated S-curve from runoff incorporated in mathematical procedure utilizing the step response function. Significant improvements in performance are observed in separating the S-curve with rainfall. A procedure to evaluate the hydrologic stability provides ways to minimize the oscillation of the S-curve associated with the determination of infiltration and baseflow. The applicability of the SRS method to runoff reproduction is examined by comparison with observed basin runoff based on the RS method. The SRS method applied to storm events for the Nenagh basin resulted in acceptable S-curves and showed its general applicability to optimization for rainfall-runoff modeling.


2006 ◽  
Vol 53 (10) ◽  
pp. 131-139 ◽  
Author(s):  
N.V. Rajyalakshmi ◽  
S. Dutta

An approach for computing the instantaneous unit hydrograph of rice agriculture dominated watesheds is proposed using the topology and hydraulic charcterstics of its stream network and the hydrologic behaviour of the rice agriculture area. The effect of rice agriculture on the watershed response is considered as partial sink areas. The sink factor, a time-variant weight factor for a particular storm event, is computed from the daily water balanace equation of the rice field. The critcal features of the simulated instantaneous unit hydrographs in three gauged watersheds located in the river Mahanadi, India were then compared with that of the observed 24-hr unit hydrograph. The comparison shows a significant correlation between the two results.


Author(s):  
Jusatria Jusatria ◽  
Syahnandito Syahnandito ◽  
M Gasali M ◽  
Rezky Kinanda

The imbalance that occurs between the availability of water and the water needs needed in Indragiri Hilir requires a conseptual review and evaluation. The all-time distribution of water availability is greatly influenced by the distribution of rain throughout the year. Conceptual analysis of water discharge with the help of IHACRES software can help analyze DAS indragiri Hilir discharge. Rainfall-runoff modeling is used to predict the value against the runoff, using the IHACRES model. The IHACRES model produces nonlinear loss module parameters and linear unit hydrograph modules. AWLR will be used, namely Bt. Kuantan Rengat station, Rain Data which will be used from Tembilahan station and climatology used from Air Molek  station. Determination of success in the model used the equations R2 and R to calculate the deviation that occurs. The calibration, verification and simulation phases begin in 2010-2015. The results of conceptual analysis of water discharge in Indragiri Hilir watershed, mainstay discharge results for irrigation purposes with a probability of 80% maximum discharge occurred in February by 4.33 m3 / s and minimum discharge occurred in April by 0.34 m3/s. Overall availability of water on site is available throughout the year. but it cannot be used for hydropower needs because the available discharge may be affected by tidal factors.   Ketidakseimbangan yang terjadi antara ketersediaan air dan kebutuhan air yang diperlukan di Indragiri Hilir memerlukan peninjauan dan evaluasi yang konseptual. Distribusi ketersedian air sepanjang waktu sangat dipengaruhi oleh distribusi hujan  sepanjang tahun . Analisis konseptual debit air dengan bantuan software IHACRES dapat membantu menganalisis debit DAS indragiri hilir. Pemodelan rainfall-runoff digunakan untuk   memprediksi nilai terhadap runoff salah satunya yaitu menggunakan model IHACRES. Model IHACRES menghasilkan parameter nonlinier loss module dan linier unit hydrograph module. AWLR akan digunakan yaitu stasiun Bt. Kuantan Rengat, Data Hujan yang akan digunakan  yaitu dari stasiun Tembilahan dan klimatologi yang digunakan dari stasiun Air Molek. Penentuan  keberhasilan pada model digunakan persamaan R2 dan R untuk menghitung simpangan yang terjadi. Tahap  kalibrasi, verifikasi dan simulasi dimulai tahun 2010-2015. Hasil analisis konseptual debit air pada DAS Indragiri Hilir, hasil debit andalan untuk keperluan irigasi dengan probabilitas 80% debit maksimum terjadi pada bulan Februari sebesar 4,33 m3/s dan debit minimum terjadi pada bulan April sebesar 0,34 m3/s. Secara keseluruhan ketersediaan air di lokasi tersedia sepanjang tahun. tetapi tidak bisa digunakan untuk kebutuhan PLTA karena debit yang tersedia mungkin dipengaruhi faktor pasang surut    


2020 ◽  
Author(s):  
Minyeob Jeong ◽  
Jongho Kim ◽  
Dae-Hong Kim

<p>A method to predict runoff based on the instantaneous unit hydrograph and dynamic wave approximation is proposed. The method is capable of generating IUH of a watershed without the need of observed rainfall and runoff data, and only topography and surface roughness of a watershed are needed. IUHs were generated using a dynamic wave model and S-hydrograph method, and IUH generated was a function of both watershed and rainfall properties. The ordinate of IUH depends on the rainfall intensities, and the peak value of IUH was proportional to the rainfall intensity while the time to peak of the IUH was inversely proportional to the rainfall intensity.  Corresponding IUHs for different rainfall intensities were used to generate runoff hydrographs. Since the IUH is generated using a dynamic wave model, it can be a tool to physically simulate the rainfall-runoff processes. Also, nonlinear rainfall-runoff relationship can be taken into account by expressing IUH as a function of rainfall excess intensity. Several test results in ideal basins and in a real watershed show that the proposed method has a good capability in predicting runoff, while several limitations remain.</p><p>Keywords: rainfall-runoff, instantaneous unit hydrograph, dynamic wave model</p>


1995 ◽  
Vol 26 (4-5) ◽  
pp. 297-312 ◽  
Author(s):  
C. Corradini ◽  
F. Melone ◽  
V. P. Singh

The geomorphologic instantaneous unit hydrograph (GIUH) as a component of rainfall-runoff models directed to the determination of design hydrographs in ungaged basins is investigated. Specifically, we first performed a sensitivity analysis of the GIUH to errors in the basin lag estimated by commonly used empirical relationships involving basin area. Then, the details required in representing the geomorphologic features in the GIUH estimate for fixed basin lag, L, were examined. Real basins located in Central Italy were selected; they range in area from 12 km2 to 4,147 km2 and are characterized by a significant variability in the drainage channel density, D. It was found that given L a minimum detail was necessary in representing basin geomorphology. Further, the estimate of L through basin area led to large errors in computing design hydrographs for a few small basins. An explicit consideration of D is suggested in order to eliminate this shortcoming.


2017 ◽  
Vol 21 (9) ◽  
pp. 4649-4661
Author(s):  
Jacek Kurnatowski

Abstract. The rainfall–runoff conceptual model as a cascade of submerged linear reservoirs with particular outflows depending on storages of adjoining reservoirs is developed. The model output contains different exponential functions with roots of Chebyshev polynomials of the first kind as exponents. The model is applied to instantaneous unit hydrograph (IUH) and recession curve problems and compared with the analogous results of the Nash cascade. A case study is performed on a basis of 46 recession periods. Obtained results show the usefulness of the model as an alternative concept to the Nash cascade.


Circular ◽  
2000 ◽  
Author(s):  
Peter W. Bush ◽  
Ann F. Ardis ◽  
Lynne Fahlquist ◽  
Patricia B. Ging ◽  
C. Evan Hornig ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document