scholarly journals ANALISIS KETERSEDIAAN AIR PADA DAS INDRAGIRI HILIR MENGGUNAKAN MODEL IHACRES

Author(s):  
Jusatria Jusatria ◽  
Syahnandito Syahnandito ◽  
M Gasali M ◽  
Rezky Kinanda

The imbalance that occurs between the availability of water and the water needs needed in Indragiri Hilir requires a conseptual review and evaluation. The all-time distribution of water availability is greatly influenced by the distribution of rain throughout the year. Conceptual analysis of water discharge with the help of IHACRES software can help analyze DAS indragiri Hilir discharge. Rainfall-runoff modeling is used to predict the value against the runoff, using the IHACRES model. The IHACRES model produces nonlinear loss module parameters and linear unit hydrograph modules. AWLR will be used, namely Bt. Kuantan Rengat station, Rain Data which will be used from Tembilahan station and climatology used from Air Molek  station. Determination of success in the model used the equations R2 and R to calculate the deviation that occurs. The calibration, verification and simulation phases begin in 2010-2015. The results of conceptual analysis of water discharge in Indragiri Hilir watershed, mainstay discharge results for irrigation purposes with a probability of 80% maximum discharge occurred in February by 4.33 m3 / s and minimum discharge occurred in April by 0.34 m3/s. Overall availability of water on site is available throughout the year. but it cannot be used for hydropower needs because the available discharge may be affected by tidal factors.   Ketidakseimbangan yang terjadi antara ketersediaan air dan kebutuhan air yang diperlukan di Indragiri Hilir memerlukan peninjauan dan evaluasi yang konseptual. Distribusi ketersedian air sepanjang waktu sangat dipengaruhi oleh distribusi hujan  sepanjang tahun . Analisis konseptual debit air dengan bantuan software IHACRES dapat membantu menganalisis debit DAS indragiri hilir. Pemodelan rainfall-runoff digunakan untuk   memprediksi nilai terhadap runoff salah satunya yaitu menggunakan model IHACRES. Model IHACRES menghasilkan parameter nonlinier loss module dan linier unit hydrograph module. AWLR akan digunakan yaitu stasiun Bt. Kuantan Rengat, Data Hujan yang akan digunakan  yaitu dari stasiun Tembilahan dan klimatologi yang digunakan dari stasiun Air Molek. Penentuan  keberhasilan pada model digunakan persamaan R2 dan R untuk menghitung simpangan yang terjadi. Tahap  kalibrasi, verifikasi dan simulasi dimulai tahun 2010-2015. Hasil analisis konseptual debit air pada DAS Indragiri Hilir, hasil debit andalan untuk keperluan irigasi dengan probabilitas 80% debit maksimum terjadi pada bulan Februari sebesar 4,33 m3/s dan debit minimum terjadi pada bulan April sebesar 0,34 m3/s. Secara keseluruhan ketersediaan air di lokasi tersedia sepanjang tahun. tetapi tidak bisa digunakan untuk kebutuhan PLTA karena debit yang tersedia mungkin dipengaruhi faktor pasang surut    

Author(s):  
Jusatria Jusatria

The modelling of Indragiri Hilir drainage basin is very necessary, considered by Indragiri Hilir area which sometimes overflows into residential areas and disturbs residents' activities. Conceptual analysis of water discharge through the Ihacres software could help to analyze the flow of Indragiri Hilir drainage basin. Rainfall-runoff modeling is used to predict runoff values, one of which is the IHACRES model. The IHACRES model produces nonlinear loss module parameters and linear hydrograph module units. AWLR that will be used is Kuantan Rengat station, Rain Data that will be used are from Tembilahan station and climatology from Air Molek station. Determination of the success of the model used equation R2 and R to calculate the deviation that occurs. The calibration, verification and simulation phase starts in 2010-2015. The result of conceptual analysis of water discharge of Indragiri Hilir drainage basin, In the calibration stage of the IHACRES Model, the best scheme is scheme 2 with R2 value 0.861 and R value 0.864. While the verification phase is carried out with the following year the best scheme is scheme 3 with the highest R2 value with R2 -2,550 and R-value 1,603 and the simulation scheme is the best scheme 5 with R2-1,904 and R-1,341.


Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3447
Author(s):  
Kee-Won Seong ◽  
Jang Hyun Sung

A methodology named the step response separation (SRS) method for deriving S-curves solely from the data for basin runoff and the associated instantaneous unit hydrograph (IUH) is presented. The SRS method extends the root selection (RS) method to generate a clearly separated S-curve from runoff incorporated in mathematical procedure utilizing the step response function. Significant improvements in performance are observed in separating the S-curve with rainfall. A procedure to evaluate the hydrologic stability provides ways to minimize the oscillation of the S-curve associated with the determination of infiltration and baseflow. The applicability of the SRS method to runoff reproduction is examined by comparison with observed basin runoff based on the RS method. The SRS method applied to storm events for the Nenagh basin resulted in acceptable S-curves and showed its general applicability to optimization for rainfall-runoff modeling.


2007 ◽  
Vol 4 (4) ◽  
pp. 2169-2204 ◽  
Author(s):  
E. A. Baltas ◽  
N. A. Dervos ◽  
M. A. Mimikou

Abstract. The present research was conducted at an experimental watershed in the prefecture of Attica, Greece, using the selected observed rainfall-runoff events from a four-year time period. The objectives of this study were two: The first was the determination of the initial abstraction Ia – watershed storage S ratio. The average ratio (Ia/S) was equal to 0.014. The corresponding ratio at a subwatershed was 0.037. The difference was attributed to the different spatial distribution of landuses at the extent of the watershed. The second objective of the study was to examine the effect of the SCS empirical equation on hydrograph simulation. This was investigated through the comparison between the observed and two different simulated hydrographs at each one out of eighteen selected storm events. The simulated hydrographs were calculated by applying on the watershed's unit hydrograph two time distributions of excess rainfall that derived from the SCS method using two different approaches. In the first approach, the initial abstraction was determined from the observed rainfall-runoff data, while in the second, it was calculated using the SCS empirical equation. It was found that the SCS empirical equation estimates greater amount of initial abstraction and leads to the delayed start of the excess rainfall and the simulated runoff. This resulted in the overestimation of the peak flow rate and the time to peak at the majority of the storm events.


1995 ◽  
Vol 26 (4-5) ◽  
pp. 297-312 ◽  
Author(s):  
C. Corradini ◽  
F. Melone ◽  
V. P. Singh

The geomorphologic instantaneous unit hydrograph (GIUH) as a component of rainfall-runoff models directed to the determination of design hydrographs in ungaged basins is investigated. Specifically, we first performed a sensitivity analysis of the GIUH to errors in the basin lag estimated by commonly used empirical relationships involving basin area. Then, the details required in representing the geomorphologic features in the GIUH estimate for fixed basin lag, L, were examined. Real basins located in Central Italy were selected; they range in area from 12 km2 to 4,147 km2 and are characterized by a significant variability in the drainage channel density, D. It was found that given L a minimum detail was necessary in representing basin geomorphology. Further, the estimate of L through basin area led to large errors in computing design hydrographs for a few small basins. An explicit consideration of D is suggested in order to eliminate this shortcoming.


Hydrology ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. 57
Author(s):  
Konstantinos Vantas ◽  
Epaminondas Sidiropoulos

The identification and recognition of temporal rainfall patterns is important and useful not only for climatological studies, but mainly for supporting rainfall–runoff modeling and water resources management. Clustering techniques applied to rainfall data provide meaningful ways for producing concise and inclusive pattern classifications. In this paper, a timeseries of rainfall data coming from the Greek National Bank of Hydrological and Meteorological Information are delineated to independent rainstorms and subjected to cluster analysis, in order to identify and extract representative patterns. The computational process is a custom-developed, domain-specific algorithm that produces temporal rainfall patterns using common characteristics from the data via fuzzy clustering in which (a) every storm may belong to more than one cluster, allowing for some equivocation in the data, (b) the number of the clusters is not assumed known a priori but is determined solely from the data and, finally, (c) intra-storm and seasonal temporal distribution patterns are produced. Traditional classification methods include prior empirical knowledge, while the proposed method is fully unsupervised, not presupposing any external elements and giving results superior to the former.


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1226
Author(s):  
Pakorn Ditthakit ◽  
Sirimon Pinthong ◽  
Nureehan Salaeh ◽  
Fadilah Binnui ◽  
Laksanara Khwanchum ◽  
...  

Accurate monthly runoff estimation is crucial in water resources management, planning, and development, preventing and reducing water-related problems, such as flooding and droughts. This article evaluates the monthly hydrological rainfall-runoff model’s performance, the GR2M model, in Thailand’s southern basins. The GR2M model requires only two parameters: production store (X1) and groundwater exchange rate (X2). Moreover, no prior research has been reported on its application in this region. The 37 runoff stations, which are located in three sub-watersheds of Thailand’s southern region, namely; Thale Sap Songkhla, Peninsular-East Coast, and Peninsular-West Coast, were selected as study cases. The available monthly hydrological data of runoff, rainfall, air temperature from the Royal Irrigation Department (RID) and the Thai Meteorological Department (TMD) were collected and analyzed. The Thornthwaite method was utilized for the determination of evapotranspiration. The model’s performance was conducted using three statistical indices: Nash–Sutcliffe Efficiency (NSE), Correlation Coefficient (r), and Overall Index (OI). The model’s calibration results for 37 runoff stations gave the average NSE, r, and OI of 0.657, 0.825, and 0.757, respectively. Moreover, the NSE, r, and OI values for the model’s verification were 0.472, 0.750, and 0.639, respectively. Hence, the GR2M model was qualified and reliable to apply for determining monthly runoff variation in this region. The spatial distribution of production store (X1) and groundwater exchange rate (X2) values was conducted using the IDW method. It was susceptible to the X1, and X2 values of approximately more than 0.90, gave the higher model’s performance.


Sign in / Sign up

Export Citation Format

Share Document