Climate Change Implications for Flexible Pavement Design and Performance in Southern Canada

2009 ◽  
Vol 135 (10) ◽  
pp. 773-782 ◽  
Author(s):  
Brian N. Mills ◽  
Susan L. Tighe ◽  
Jean Andrey ◽  
James T. Smith ◽  
Ken Huen
2016 ◽  
Vol 43 (4) ◽  
pp. 312-319 ◽  
Author(s):  
Jean-Pascal Bilodeau ◽  
Guy Doré ◽  
François Perron Drolet ◽  
Diane Chaumont

In cold regions, climate affects flexible pavement performance, such as frost heave. In the context of a changing climate, air freezing index can no longer be considered as fixed for pavement design. Climate simulations were performed for Quebec conditions to determine the evolution of the air freezing index over the coming decades. Using a relationship between average frost heave and the yearly roughness deterioration rate and a proposed method to consider decreasing air freezing index, the effect of climate change was quantified with respect to the 1971–2000 conditions. Thinner pavement structures are obtained with the calculation approach, and its effect was quantified in terms of materials and pavement life. It was shown that a reduction of 100 mm could be considered for pavements built on frost sensitive soils. In addition, the proposed method showed an increase of pavement life, quantified with roughness, for most of the cases considered.


Author(s):  
Anne M. K. Stoner ◽  
Jo Sias Daniel ◽  
Jennifer M. Jacobs ◽  
Katharine Hayhoe ◽  
Ian Scott-Fleming

Flexible pavement design requires considering a variety of factors including the materials used, variations in water tables, traffic levels, and the climatic conditions the road will experience over its lifetime. Most pavement designs are based on historical climate variables such as temperature and precipitation that are already changing across much of the United States, and do not reflect projected trends. As pavements are typically designed to last 20 years or more, designs that do not account for current and future trends can result in reduced performance. However, incorporating climate projections into pavement design is not a trivial exercise. Significant mismatches in both spatial and temporal scale challenge the integration of the latest global climate model simulations into pavement models. This study provides a national-level overview of what the impact of climate change to flexible pavement could look like, and where regional focus should be placed. It also demonstrates a new approach to developing high-resolution spatial and temporal projections that generates hourly information at the scale of individual weather stations, and applies this as input to the AASHTOWare Pavement ME Design™ model. The impact of three different future climates on pavement performance and time to reach failure thresholds in 24 locations across the United States are quantified. Changes to projected pavement performance differ by location, but nearly all result in decreased performance under current design standards. The largest increases in distress are observed for permanent deformation measures, especially toward the end of the century under greater increases in temperature.


2013 ◽  
Vol 40 (12) ◽  
pp. 1173-1183 ◽  
Author(s):  
Qiang Joshua Li ◽  
Leslie Mills ◽  
Sue McNeil ◽  
Nii O. Attoh-Okine

Given anticipated climate change and its inherent uncertainty, a pavement could be subjected to different climatic conditions over its life and might be inadequate to withstand future environmental stresses beyond those currently considered during pavement design. This paper incorporates climate change effects into the mechanistic–empirical (M-E) based pavement design to explore potential climate change and its uncertainty on pavement design and performance. Three important questions are addressed: (1) How does pavement performance deteriorate differently with climate change and its uncertainty? (2) What is the risk if climate change and its uncertainty are not considered in design? and (3) How do pavement designers respond and incorporate this change into M-E design ? Three test sites in the United States are examined and results demonstrate a robust and effective approach to integrate climate change into pavement design as an adaptation strategy.


Author(s):  
Katie E. Haslett ◽  
Jayne F. Knott ◽  
Anne M. K. Stoner ◽  
Jo E. Sias ◽  
Eshan V. Dave ◽  
...  

Author(s):  
Lucio Salles de Salles ◽  
Lev Khazanovich

The Pavement ME transverse joint faulting model incorporates mechanistic theories that predict development of joint faulting in jointed plain concrete pavements (JPCP). The model is calibrated using the Long-Term Pavement Performance database. However, the Mechanistic-Empirical Pavement Design Guide (MEPDG) encourages transportation agencies, such as state departments of transportation, to perform local calibrations of the faulting model included in Pavement ME. Model calibration is a complicated and effort-intensive process that requires high-quality pavement design and performance data. Pavement management data—which is collected regularly and in large amounts—may present higher variability than is desired for faulting performance model calibration. The MEPDG performance prediction models predict pavement distresses with 50% reliability. JPCP are usually designed for high levels of faulting reliability to reduce likelihood of excessive faulting. For design, improving the faulting reliability model is as important as improving the faulting prediction model. This paper proposes a calibration of the Pavement ME reliability model using pavement management system (PMS) data. It illustrates the proposed approach using PMS data from Pennsylvania Department of Transportation. Results show an increase in accuracy for faulting predictions using the new reliability model with various design characteristics. Moreover, the new reliability model allows design of JPCP considering higher levels of traffic because of the less conservative predictions.


2021 ◽  
Vol 35 (4) ◽  
pp. 03121002
Author(s):  
Omran Maadani ◽  
Mohammad Shafiee ◽  
Igor Egorov

Author(s):  
Khaled A. Galal ◽  
Ghassan R. Chehab

One of the Indiana Department of Transportation's (INDOT's) strategic goals is to improve its pavement design procedures. This goal can be accomplished by fully implementing the 2002 mechanistic–empirical (M-E) pavement design guide (M-E PDG) once it is approved by AASHTO. The release of the M-E PDG software has provided a unique opportunity for INDOT engineers to evaluate, calibrate, and validate the new M-E design process. A continuously reinforced concrete pavement on I-65 was rubblized and overlaid with a 13–in.-thick hot-mix asphalt overlay in 1994. The availability of the structural design, material properties, and climatic and traffic conditions, in addition to the availability of performance data, provided a unique opportunity for comparing the predicted performance of this section using the M-E procedure with the in situ performance; calibration efforts were conducted subsequently. The 1993 design of this pavement section was compared with the 2002 M-E design, and performance was predicted with the same design inputs. In addition, design levels and inputs were varied to achieve the following: ( a) assess the functionality of the M-E PDG software and the feasibility of applying M-E design concepts for structural pavement design of Indiana roadways, ( b) determine the sensitivity of the design parameters and the input levels most critical to the M-E PDG predicted distresses and their impact on the implementation strategy that would be recommended to INDOT, and ( c) evaluate the rubblization technique that was implemented on the I-65 pavement section.


Author(s):  
G. Kollaros ◽  
A. Athanasopoulou ◽  
A. Kokkalis

Sign in / Sign up

Export Citation Format

Share Document