Effect of Soil Moisture Content and Dry Density on Cohesive Soil–Geosynthetic Interactions Using Large Direct Shear Tests

2007 ◽  
Vol 19 (7) ◽  
pp. 540-549 ◽  
Author(s):  
Murad Abu-Farsakh ◽  
Julian Coronel ◽  
Mingjiang Tao
2019 ◽  
Vol 8 (4) ◽  
pp. 12457-12460

The Water Scarcity is a prominent feature in Arid and Semi-Arid region. Soil moisture content is significant factor in deciding vegetation growth and also affects the performance of any water harvesting system in place. This paper evaluates the interrelationship of Soil properties with Soil Moisture content. The study covers about 13 soil Samples from Single Watershed. The soil properties covered in the study are Conductivity, pH, Bulk Density, Dry Density, Specific gravity, organic content, void ratio, and Moisture Content. Multiple linear regression analysis was done to determine significance of each soil properties for soil moisture content as individual and as whole. Modelling was done based on soil characteristics to predict Soil Moisture. Principal Component Analysis was performed to identify most significant soil properties responsible for variation of prediction of Soil Moisture content. The Correlation between location topography and Moisture Content was obtained through Cluster Analysis.


2015 ◽  
Vol 37 (2) ◽  
pp. 45-49 ◽  
Author(s):  
Emil Soból ◽  
Wojciech Sas ◽  
Alojzy Szymański

Abstract The depletion of natural resources is forcing researchers to explore the possibilities of new aggregates, such as recycled concrete aggregate (RCA). In this article, the mechanical properties and the influence of the size of the direct shear box on the obtained parameters were examined. The study was conducted in two apparatus: medium (120 × 120 mm) and large (250 × 250 mm). In each of these devices, a total of 6 tests were performed: 3 for dry sample and 3 at optimum moisture content. From the results, the conclusions described below have been drawn


2012 ◽  
Vol 256-259 ◽  
pp. 336-339
Author(s):  
Hong Xia Yang

Through indoor the compaction test and unconfined compressive strength of compacted soil samples and CBR strength test, analyzes compaction characteristics of wetland fine grained soil and the change rule of compacted strength with compaction work and moisture content.The results show that under the same compaction work effect, when the soil moisture content is less than optimum moisture content,along with the increase of moisture content, dry density increases, when the soil moisture content is greater than the optimum moisture content, along with the increase of moisture content, dry density decreases and to a larger extent.When the compaction work is bigger, the soil dry density is bigger, the compaction strength is higher and the optimum moisture content is smaller.Strength decreases when under high moisture content condition, CBR value is relatively stable in the wet side of optimum moisture content.


Author(s):  
Sang Ick Lee ◽  
Dan G. Zollinger ◽  
Robert L. Lytton

Although the moisture condition of pavement sublayers can significantly affect pavement performance, accurate interpretation of in situ soil moisture measurements has been difficult to achieve because of the limitations of existing methods. Time domain reflectometry (TDR), originally developed to detect breaks or shorts in electrical conductors, has been used for measuring parameters related to the in situ soil moisture content. However, the apparent length method currently used to determine dielectric constant ignores other electrical properties of the conducting medium that may affect the interpretation of TDR trace to determine soil moisture. Furthermore, the existing methods for computing volumetric water content ignore the variations of dry density and determine the model parameters with assumption or regression analysis. These deficiencies can, in many cases, create a significant systematic error in the final determination of volumetric water content. To minimize these errors and improve the accuracy of moisture content estimate, a new three-step approach was proposed. The approach uses the transmission line equation to calculate the dielectric constant, conductivity, and reflectivity of a soil mixture. A micromechanics and self-consistent scheme was used to determine the volumetric moisture content and dry density on the basis of calibrated values of the solid and water dielectric constants. The system identification method was used iteratively to solve for dielectric parameters, soil moisture content, and dry density values. The validation of the new approach with ground-truth data indicated that the calculated errors were significantly less than those of existing method.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Muawia A. Dafalla

The direct shear test using shear box is commonly recommended by practicing geotechnical engineers to obtain the cohesion and angle of internal friction for granular soils. The clay liners involve sand as a main constituent with added clay of variable proportions. This research aims at investigating the reliability of using the direct shear test for different clay contents and different moisture contents using an adequate shearing strain. These factors were found to affect the bilinear trends of shear force versus horizontal displacement profile as well as vertical displacement versus horizontal displacement curves. The cohesion of the mixture was found to increase consistently with the increase of clay content. Increase in moisture content was found to cause a drop in both cohesion and angle of internal friction. These changes are not independent of the density state of clay-sand mixtures. Standard compaction properties for a range of clay-sand mixtures were investigated. This work provides the general trends expected in direct shear tests for clay-sand mixtures of variable clay and moisture contents.


2011 ◽  
Vol 28 (1) ◽  
pp. 85-91 ◽  
Author(s):  
Run-chun LI ◽  
Xiu-zhi ZHANG ◽  
Li-hua WANG ◽  
Xin-yan LV ◽  
Yuan GAO

2001 ◽  
Vol 66 ◽  
Author(s):  
M. Aslanidou ◽  
P. Smiris

This  study deals with the soil moisture distribution and its effect on the  potential growth and    adaptation of the over-story species in north-east Chalkidiki. These  species are: Quercus    dalechampii Ten, Quercus  conferta Kit, Quercus  pubescens Willd, Castanea  sativa Mill, Fagus    moesiaca Maly-Domin and also Taxus baccata L. in mixed stands  with Fagus moesiaca.    Samples of soil, 1-2 kg per 20cm depth, were taken and the moisture content  of each sample    was measured in order to determine soil moisture distribution and its  contribution to the growth    of the forest species. The most important results are: i) available water  is influenced by the soil    depth. During the summer, at a soil depth of 10 cm a significant  restriction was observed. ii) the    large duration of the dry period in the deep soil layers has less adverse  effect on stands growth than in the case of the soil surface layers, due to the fact that the root system mainly spreads out    at a soil depth of 40 cm iii) in the beginning of the growing season, the  soil moisture content is    greater than 30 % at a soil depth of 60 cm, in beech and mixed beech-yew  stands, is 10-15 % in    the Q. pubescens  stands and it's more than 30 % at a soil depth of 60 cm in Q. dalechampii    stands.


Sign in / Sign up

Export Citation Format

Share Document