Effect of Sulfate Attack on Reinforced Concrete Columns Confined with CFRP Sheets under Axial Compression

2021 ◽  
Vol 25 (6) ◽  
pp. 04021049
Author(s):  
T. Huynh-Xuan ◽  
T. Do-Dai ◽  
T. Ngo-Thanh ◽  
Thong M. Pham ◽  
L. Nguyen-Minh
2017 ◽  
Vol 27 (9) ◽  
pp. 1416-1447 ◽  
Author(s):  
Liu Jin ◽  
Shuai Zhang ◽  
Dong Li ◽  
Haibin Xu ◽  
Xiuli Du ◽  
...  

The results of an experimental program on eight short reinforced concrete columns having different structural sizes and axial compression ratios subjected to monotonic/cyclic lateral loading were reported. A 3D mesoscopic simulation method for the analysis of mechanical properties of reinforced concrete members was established, and then it was utilized as an important supplement and extension of the traditional experimental method. Lots of numerical trials, based on the restricted experimental results and the proposed 3D mesoscopic simulation method, were carried out to sufficiently evaluate the seismic performances of short reinforced concrete columns with different structural sizes and axial compression ratios. The test results indicate that (1) the failure pattern of reinforced concrete columns can be significantly affected by the shear-span ratio; (2) increasing the axial compression ratio could improve the load capacity of the reinforced concrete column, but the deformation capacity would be restricted and the failure mode would be more brittle, consequently the energy dissipation capacity could be deteriorated; and (3) the load capacity, the displacement ductility, and the energy dissipation capacity of the short reinforced concrete columns all exhibit clear size effect, namely, the size effect could significantly affect the seismic behavior of reinforced concrete columns.


2017 ◽  
Vol 21 (8) ◽  
pp. 1234-1248 ◽  
Author(s):  
Shenchun Xu ◽  
Chengqing Wu ◽  
Zhongxian Liu ◽  
Jun Li

A finite element model is developed to investigate the behaviour of ultra-high-performance steel fibre–reinforced concrete columns under combined axial compression and horizontal monotonic push loading. The effects of steel fibre content, axial compression ratio, reinforcement ratio (or rebar ratio), stirrup ratio and shear span ratio on the structural behaviour of ultra-high-performance steel fibre–reinforced concrete columns are investigated in detail. The numerical model shows good agreement in bond–slip behaviour of specimens based on CEB model results and numerical results, and such behaviour should be taken into consideration in engineering practice. The results indicate that the developed finite element model could predict the structural behaviour and failure mode of ultra-high-performance steel fibre–reinforced concrete columns effectively. It is found that the reinforcement ratio, axial compression ratio, shear span ratio and volume fraction of steel fibre have a great influence on both the structural behaviour and failure modes of specimens.


Sign in / Sign up

Export Citation Format

Share Document