Analytical Solution for Dynamic Response of Underground Rectangular Fluid Tank Subjected to Arbitrary Dynamic Loads

2020 ◽  
Vol 146 (8) ◽  
pp. 04020077 ◽  
Author(s):  
Haitao Yu ◽  
Yuqi Sun ◽  
Pan Li ◽  
Mi Zhao
1981 ◽  
Vol 103 (2) ◽  
pp. 357-363 ◽  
Author(s):  
K. Nagaya ◽  
S. Uematsu

For the dynamic response problems of gear teeth, the dynamic loads which act upon the gear teeth should be considered as a function of both the position and the moving speed. In previous studies, the effects of the moving speed have not been considered. In this paper the effects of the moving speed of dynamic loads on the deflection and the bending moment of the gear tooth are investigated. The results are obtained from the elastodynamic analysis of the tapered Timoshenko beam.


2019 ◽  
Vol 5 (8) ◽  
pp. 1738-1752 ◽  
Author(s):  
Saif Khalil Ibrahim ◽  
Waad A. Zakaria

This paper presents an experimental study on the dynamic response of square footings under effect of dynamic load comes from adjacent footing called the (source of vibration (which is excited by a known vibration source placed on the top of it, the objective is to study the effect of dynamic motion of the source of vibration on a nearby footing, called second footing, both footings rest on collapsible soil (gypseouse soil) with gypseouse content (60%). The study is performed through wide experimental program in dry and soaked condition. The first footing (source vibration) and the second footing have dimensions (80 80 40), (100 100 40) mm respectively and are manufactured from steel, then the two footings placed centrally over soil after prepared it in layers’ form in steel container with (1000 500 500) mm. The first footing exposed to vertical harmonic loading by using a rotating mass type mechanical oscillator to gives a similar effect of the dynamic loads, the second footing loaded with static weight only, under the dynamic excitation. The tests are conducted under dynamic response for three frequencies (10, 20, 30) Hz, the movement (displacement amplitude, velocity, and acceleration) of the second footing studied by varying spacing between the footings. The results showed that the amplitude of displacement, velocity, and acceleration for the second footing decreases when the spacing between footing increase. In addition, the value of these parameters at dry state is greater than its value at soaked state.


1987 ◽  
Vol 109 (4) ◽  
pp. 416-421 ◽  
Author(s):  
Kosuke Nagaya

This paper discusses the dynamic behavior of a flexible multiple disk clutch subjected to dynamic loads. The expressions for obtaining the dynamic response and the transmission torque of the clutch have been derived from the equation of motion of a circular plate by applying the Laplace transform procedure. The results for the clutch subjected to a static load have also been obtained. The comparison between both static and dynamic results has been made to clarify the effect of the impact of the load on the behavior of the clutch.


2012 ◽  
Vol 232 ◽  
pp. 117-121 ◽  
Author(s):  
M. Sepehrinour ◽  
M. Nezami

Dynamic response of an electro-rheological sandwich beam subjected to simultaneous Impact loads will be considered. Analytical solution will be used to draw FRF diagram of the beam for different electric field. Upper and lower layers of the beam have different material properties. Coupled governing equations derived from Hamilton Principle will be solved in frequency domain to find transverse vibration of the beam.


2008 ◽  
Vol 130 (5) ◽  
Author(s):  
Lu Sun ◽  
Feiquan Luo

A Bernoulli–Euler beam resting on a viscoelastic foundation subject to a platoon of moving dynamic loads can be used as a physical model to describe railways and highways under traffic loading. Vertical displacement, vertical velocity, and vertical acceleration responses of the beam are initially obtained in the frequency domain and then represented as integrations of complex function in the space-time domain. A bifurcation is found in critical speed against resonance frequency. When the dimensionless frequency is high, there is a single critical speed that increases as the dimensionless frequency increases. When the dimensionless frequency is low, there are two critical speeds. One speed increases as the dimensionless frequency increases, while the other speed decreases as the dimensionless frequency decreases. Based on the fast Fourier transform, numerical methods are developed for efficient computation of dynamic response of the beam.


2011 ◽  
Vol 105-107 ◽  
pp. 13-19
Author(s):  
Xiao Yun Liu ◽  
Chun Juan Shi ◽  
Shui Jing Chen

In order to study the dynamic response of the asphalt pavement under vehicle random stimulation, the random vibration model of vehicles and the mathematic model of pavement dynamic response in which the base and surface are all viscoelasticity are established respectively. The analytical solution of the stochastic response for the pavement is deduced. The stochastic load acted on the pavement can be gotten by the mathematic model of the vehicle vibration. The numeral feature functions of the random response, such as even function, time-space correlation function, time correlation function and mean square function, are obtained by the analytical solution. The paper provides a theory method for studying the random response of the asphalt pavement.


Sign in / Sign up

Export Citation Format

Share Document