Impact of Occupant Behavior on Thermal Performance of the Typical-Composite Walls of a Building

2021 ◽  
Vol 147 (5) ◽  
pp. 04021039
Author(s):  
Biao Yan ◽  
Xi Meng ◽  
Jinlong Ouyang ◽  
Enshen Long
Buildings ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 95
Author(s):  
Khaled Tarabieh ◽  
Ahmed Aboulmagd

The demand for energy-efficient housing is on the rise in Egypt. The information about the individual materials used in the construction of typical residential wall assemblies are known in the literature. However, data from lab tests to validate the performance for whole composite walls are limited. Three typical wall types were constructed and tested utilizing a standard experimental evaluation procedure based on thermal convection loads. A research framework combining the validated thermal performance data from the experimental test and the simulated data was developed. The experimental tests were performed utilizing a state-of-the-art guarded hotbox apparatus and following the guidelines of the ASTM C1363-11 standard. The solar radiation load was taken into account in the calculations according to the standard, and the error estimation and uncertainty analysis for the experimental tests are reported. The results of the experimental testing are described and a recommendation of the best wall type is noted. The output of this research will help to initiate a material database of the thermal performance of typical residential wall types used in Egypt that have been validated in the lab. This will be useful for the building industry as a whole to understand the performance of the materials in composite assemblies and their impact on energy efficiency.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Qifeng Shan ◽  
Keting Tong ◽  
Xiaocun Zhang ◽  
Yushun Li

In this paper, a bamboo steel composite testing building was designed and built to study the thermal performance of a new proposed bamboo steel composite wall. The heat flux meter method was adopted in the field test to measure the heat transfer coefficient of the composite wall. The energy consumption of testing building was measured to verify the validity of the simulation model. Then, the simulation analysis was conducted to study the energy performance of the composite walls compared with reinforced concrete wall in different climate regions. The result showed that the measurement value of heat transfer coefficient matched well with the theoretical calculation value, and both values meet the requirement of the standard. The simulation result showed that the composite walls had better energy performance and had great potential utilization in residential buildings in different climate regions.


2021 ◽  
Vol 86 (783) ◽  
pp. 506-516
Author(s):  
Kenichi HASEGAWA ◽  
Sayaka MASUDA ◽  
Hiroshi YOSHINO ◽  
Shin-ichi MATSUMOTO ◽  
Jinya TAKEUCHI

2020 ◽  
Vol 92 (3) ◽  
pp. 30901
Author(s):  
Suvanjan Bhattacharyya ◽  
Debraj Sarkar ◽  
Ulavathi Shettar Mahabaleshwar ◽  
Manoj K. Soni ◽  
M. Mohanraj

The current study experimentally investigates the heat transfer augmentation on the novel axial corrugated heat exchanger tube in which the spring tape is introduced. Air (Pr = 0.707) is used as a working fluid. In order to augment the thermohydraulic performance, a corrugated tube with inserts is offered. The experimental study is further extended by varying the important parameters like spring ratio (y = 1.5, 2.0, 2.5) and Reynolds number (Re = 10 000–52 000). The angular pitch between the two neighboring corrugations and the angle of the corrugation is kept constant through the experiments at β = 1200 and α = 600 respectively, while two different corrugations heights (h) are analyzed. While increasing the corrugation height and decreasing the spring ratio, the impact of the swirling effect improves the thermal performance of the system. The maximum thermal performance is obtained when the corrugation height is h = 0.2 and spring ratio y = 1.5. Eventually, correlations for predicting friction factor (f) and Nusselt number (Nu) are developed.


2019 ◽  
Vol 50 (8) ◽  
pp. 757-772 ◽  
Author(s):  
Yicang Huang ◽  
Hui Li ◽  
Shengnan Shen ◽  
Yongbo Xue ◽  
Mingliang Xu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document