Analytical Solution for Biot Flow–Induced Damping in Saturated Soil during Shear Wave Excitations

2010 ◽  
Vol 136 (11) ◽  
pp. 1501-1508 ◽  
Author(s):  
Tong Qiu
Author(s):  
Wenjie Ma ◽  
Yao Shan ◽  
Binglong Wang ◽  
Shunhua Zhou

The torsional dynamic response of a pile embedded in transversely isotropic saturated soil is investigated while allowing for the construction of disturbance effect. The dynamic governing equations of soil are established based on Biot’s poroelastic theory. By virtue of the continuous conditions of stress and displacement of adjacent disturbance circle and the boundary conditions of pile-soil coupling system, the circumferential displacement of soil and the shear stress on pile-soil contact surface are derived. Subsequently, a closed-form solution for the torsional dynamic response of a pile is derived in the frequency domain. By using inverse Fourier transform and the convolution theorem, a quasi-analytical solution for the velocity response of the pile head subjected to a semi-sine excitation torque is derived in the time domain. The proposed analytical solution is verified by comparing with the two existing solutions available in literature. Following the present solution, a parameter study is undertaken to portray the influence on the complex impedance, twist angle and torque of pile.


2014 ◽  
Vol 51 (11) ◽  
pp. 1284-1302 ◽  
Author(s):  
Fawad S. Niazi ◽  
Paul W. Mayne

The Osterberg cell (O-cell) type of bidirectional pile load testing is a modern full-scale proofing method in the realm of performance-based pile design. It is done at considerable cost, not possible on small- to medium-size projects. An economical approach of utilizing the flexible and approximate analytical solution proposed by Randolph has frequently been adopted in the past for evaluating pile settlements under static, unidirectional, top-down axial compression loading. To extend this solution for O-cell loadings, the following adaptations are warranted: (i) appropriate modifications to handle the loadings in two directions and (ii) development of a nonlinear stiffness reduction model, derived from the back-analysis of O-cell pile load tests. Accordingly, a modified analytical solution is presented for the two common cases of O-cell loading arrangements. Using these modified sets of solutions and a well-documented database of O-cell load tests on drilled shaft foundations from different sites, two stiffness reduction models have been developed. The shear wave velocity readings obtained from the hybrid geophysical–geotechnical seismic piezocone tests afford the evaluation of fundamental shear stiffness modulus (Gmax) profiles. These profiles together with the re-arranged modified solution were applied to the axial loads versus displacements (Q–w) from the database of load tests to back-calculate the applicable operational shear stiffness (G) values. Additional sensitivity analyses indicate that pile geometry and soil stiffness profile are the two most significant factors affecting the outcome of this solution. A comprehensive set of step-by-step example calculations is included to explain the procedure for implementing the solution.


Sign in / Sign up

Export Citation Format

Share Document