scholarly journals Analytical solution of soil deformation and fluid pressure change for a two-layer system with an upper unsaturated soil and a lower saturated soil under external loading

2020 ◽  
Vol 588 ◽  
pp. 124997 ◽  
Author(s):  
WeiCheng Lo ◽  
Ronaldo I. Borja ◽  
Jiao-Hong Deng ◽  
Jhe-Wei Lee
2015 ◽  
Vol 137 (9) ◽  
Author(s):  
Joe Tien ◽  
Le Li ◽  
Ozgur Ozsun ◽  
Kamil L. Ekinci

In order to understand how interstitial fluid pressure and flow affect cell behavior, many studies use microfluidic approaches to apply externally controlled pressures to the boundary of a cell-containing gel. It is generally assumed that the resulting interstitial pressure distribution quickly reaches a steady-state, but this assumption has not been rigorously tested. Here, we demonstrate experimentally and computationally that the interstitial fluid pressure within an extracellular matrix gel in a microfluidic device can, in some cases, react with a long time delay to external loading. Remarkably, the source of this delay is the slight (∼100 nm in the cases examined here) distension of the walls of the device under pressure. Finite-element models show that the dynamics of interstitial pressure can be described as an instantaneous jump, followed by axial and transverse diffusion, until the steady pressure distribution is reached. The dynamics follow scaling laws that enable estimation of a gel's poroelastic constants from time-resolved measurements of interstitial fluid pressure.


2012 ◽  
Vol 614-615 ◽  
pp. 688-694 ◽  
Author(s):  
Yi Wang ◽  
Guo Min Shen

In this paper, at first, an effective soil thermal conductivity model was established. Single factor regression analysis for 6 uncertain factors contained in the model was then conducted respectively. Finally, the primary and secondary characters of these uncertain factors were analyzed by using the orthogonal test. The analysis results show that the effective soil thermal conductivity has linear relationships with the saturation degree of unsaturated soil and the depth of water table and has power function relationships with other 4 uncertain factors; the porosity of unsaturated soil has the greatest effect on the effective soil thermal properties, followed by saturation degree of unsaturated soil, porosity of saturated soil, solid phase thermal conductivity of unsaturated soil, solid phase thermal conductivity of saturated soil and the depth of water table.


2019 ◽  
Vol 24 (02) ◽  
pp. 169-174
Author(s):  
Yoke-Rung Wong ◽  
Sophie Sok Huei Tay ◽  
Ita Suzana Mat Jais ◽  
Hwa-Liang Leo ◽  
Chee-Fui Lieu ◽  
...  

Background: The interaction between wrist kinematics and synovial fluid pressure has yet to be studied. To our knowledge, this is the first study to determine the effect of scapholunate joint kinematics on synovial fluid pressure change using finite volume method. Methods: The carpal bones of a cadaveric hand were obtained from Computed Tomography (CT) scans. CT images of the carpal bones were segmented and reconstructed into 3D model. The 3D synovial fluid model between the scaphoid and lunate was constructed and then used for computational simulations. The kinematics data of scapholunate joint obtained from radioulnar deviation of the wrist was investigated. Results: It was found that the pressure in synovial fluid varied from -1.68 to 2.64 Pa with maximum pressure located at the scaphoid-fluid interface during the radial deviation. For ulnar deviation, the pressure increased gradually from the scaphoid-fluid interface towards the lunate-fluid interface (-1.37 to 0.37 Pa). Conclusions: This new computational model provides a basis for the study of pathomechanics of ligament injury with the inclusion of synovial fluid.


2011 ◽  
Vol 368-373 ◽  
pp. 2692-2697
Author(s):  
Hua Xi Gao ◽  
Min Jie Wen ◽  
Rong Xin Li

Based on Biot saturated soil theory, steady state dynamic response of the system is studied in the frequency domain when the inner boundary of a fractional derivative viscoelastic type circular lined tunnel is under the axisymmetric load and fluid pressure respectively. On the basis of introducing a partial permeable boundary condition, the solutions of stress, displacement and pore pressure of the lining and saturated soil are obtained by the inner boundary of the lining and continuity conditions of the interface, besides, the stress-displacement constitutive behavior of the lining is described by fractional derivative viscoelastic constitutive model. The influence of physical parameter on the system response is investigated. It is shown that the order of fractional derivative model has a great influence on the system dynamic response, and it depends on material parameter of the lining when the inner boundary of lining is subjected to axisymmetric load. The permeability parameter of lining has significant effects on system response induced by fluid pressure.


Soil Research ◽  
1965 ◽  
Vol 3 (1) ◽  
pp. 1 ◽  
Author(s):  
CW Rose ◽  
WR Stern ◽  
JE Drummond

A theory is presented to calculate hydraulic conductivity from successive measurements of water content profiles for soil in situ. With unsaturated soil, potential gradients are inferred using moisture characteristics, but with saturated soil these gradients must be measured directly. The weight of overburden can affect in situ soil water suction, and a method for determining this effect is given. The theory was applied to a soil profile with marked changes in moisture characteristics and texture, and conductivity was determined for several depths as a function of water content.


Sign in / Sign up

Export Citation Format

Share Document