Effect of Low-Density Polyethylene on Fracture Toughness of Asphalt Concrete Mixtures

2010 ◽  
Vol 22 (10) ◽  
pp. 1019-1024 ◽  
Author(s):  
Ayman M. Othman
ICSDEMS 2019 ◽  
2020 ◽  
pp. 187-194
Author(s):  
Sukobar ◽  
Machsus Machsus ◽  
Rachmad Basuki ◽  
Amalia Firdaus Mawardi ◽  
Moh. Firli Firdausi

2021 ◽  
Vol 11 (11) ◽  
pp. 5094
Author(s):  
Dayong Yang ◽  
Hamid Reza Karimi ◽  
Mohammad Reza Mohammad Aliha

As an inherent characteristic of materials, the fracture toughness is an important parameter to study the cracking behavior of asphalt concrete mixtures. Although material compositions and environmental conditions have a significant effect on the fracture toughness, for a certain material and testing environment, the test condition including the specimen configuration and loading type may also affect the obtained fracture toughness. In this paper, the effect of specimen configuration and applied loading type on the measured pure mode-I fracture toughness (KIc) is investigated. In order to achieve this purpose, using a typical asphalt mixture, four different test specimens including Semi-Circular Bend (SCB), Edge Notch Disc Bend (ENDB), Single Edge Notch Beam (SENB) and Edge Notch Diametral Compression (ENDC) disc are tested under pure mode I. The mentioned specimens have different shapes (i.e., full disc, semi-disc and rectangular beam) and are loaded either with symmetric three-point bending or diametral compressive force. The tests were performed at two low temperatures (−5 °C and −25 °C) and it was observed that the critical mode-I fracture toughness (KIc) was changed slightly (up to 10%) by changing the shape of the test specimen (i.e., disc and beam). This reveals that the fracture toughness is not significantly dependent on the shape of the test specimen. However, the type of applied loading has a significant influence on the determined mode I fracture toughness such that the fracture toughness determined by the disc shape specimen loaded by diametral compression (i.e., ENDC) is about 25% less than the KIc value with the same geometry but loaded with the three-point bending (i.e., ENDB) specimen. In addition, the fracture toughness values of all tested samples were increased linearly by decreasing the test temperature such that the fracture toughness ratio (KIc (@-25 °C)/KIc (@-5 °C)) was nearly constant for the ENDB, ENDC, SCB and SENB samples.


Coatings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1079
Author(s):  
Umer Sharif ◽  
Beibei Sun ◽  
Md Shafiqul Islam ◽  
Kashif Majeed ◽  
Dauda Sh. Ibrahim ◽  
...  

Liquid food packages consist of various polymers films, which are bonded together with Aluminum foil (Al-foil) using adhesion or by direct heat. The main aim of this research was to define important material properties such as fracture toughness and some FE-simulation material model parameters such as damage initiation, damage evolution, and the adhesion between Al-foil and low-density polyethylene (LDPE) film. This investigation is based on both physical experiments and FE simulations in ABAQUS with and without initial cracks of different lengths for comparison purposes. The final FE model in ABAQUS was used to compare the numerical input parameters in an extensive study with the ambition to investigate the materials’ parameters in cases with or without adhesion between laminates. Finally, the relation between the theoretical and experimental results for Al-foil using linear elastic fracture mechanics and modified strip yield model were shown, and the fracture toughness was calculated for two different thicknesses of Al-foil.


2019 ◽  
Vol 961 ◽  
pp. 16-22
Author(s):  
Purnomo ◽  
Putu Hadi Setyarini ◽  
Dwi Sulistyaningsih

The aim of this study is to investigate the behavior of banana fiber (BF)-low-density polyethylene (LDPE) composite fracture toughness. The LDPE pellets are transformed into powder form which is then functioned as a matrix reinforced with banana fiber (BF). The composites were formed by injection molding techniques which are followed by atmospheric-pressure annealing at 90°C for 24 hours. The composite fracture toughness behavior was evaluated using the essential work of fracture (EWF) approach. The results show that fracture toughness which is characterized by essential fracture work (we) value increases by the presence of BF up to 5 wt.%. However, the we value starts to decrease in the composite with BF content of 6 wt.%. There is a mismatch about the phenomenon of non-essential fracture work. Stress-whitened zones can be seen and observed but non-essential fracture work based on curves is a negative value.


Sign in / Sign up

Export Citation Format

Share Document