Seismic Performance of Low-Rise Wood-Framed and Reinforced Masonry Buildings with Clay Masonry Veneer

2013 ◽  
Vol 139 (8) ◽  
pp. 1326-1339 ◽  
Author(s):  
Richard E. Klingner ◽  
W. Mark McGinley ◽  
P. Benson Shing ◽  
David I. McLean ◽  
Seongwoo Jo ◽  
...  
2021 ◽  
Vol 11 (10) ◽  
pp. 4421
Author(s):  
Zhiming Zhang ◽  
Fenglai Wang

In this study, four single-story reinforced masonry shear walls (RMSWs) (two prefabricated and two cast-in-place) under reversed cyclic loading were tested to evaluate their seismic performance. The aim of the study was to evaluate the shear behavior of RMSWs with flanges at the wall ends as well as the effect of construction method. The test results showed that all specimens had a similar failure mode with diagonal cracking. However, the crack distribution was strongly influenced by the construction method. The lateral capacity of the prefabricated walls was 12% and 27% higher than that of the corresponding cast-in-place walls with respect to the rectangular and T-shaped cross sections. The prefabricated walls showed better post-cracking performance than did the cast-in-place wall. The secant stiffness of all the walls decreased rapidly to approximately 63% of the initial stiffness when the first major diagonal crack was observed. The idealized equivalent elastic-plastic system showed that the prefabricated walls had a greater displacement ductility of 3.2–4.8 than that of the cast-in-place walls with a displacement ductility value of 2.3–2.7. This proved that the vertical joints in prefabricated RMSWs enhanced the seismic performance of walls in shear capacity and ductility. In addition, the equivalent viscous damping of the specimens ranged from 0.13 to 0.26 for prefabricated and cast-in-place walls, respectively.


2015 ◽  
Vol 31 (1) ◽  
pp. 215-246 ◽  
Author(s):  
Mohammed Javed ◽  
Guido Magenes ◽  
Bashir Alam ◽  
Akhtar Naeem Khan ◽  
Qaisar Ali ◽  
...  

Unreinforced masonry buildings, constructed with stones or bricks, are common in the northern areas of Pakistan. In the October 2005 Kashmir earthquake, the seismic performance of stone masonry buildings was found to be poor, which was the primary source of fatalities. Unreinforced brick masonry (URBM) buildings, however, performed well even in severely jolted areas. The performance of URBM could have been much better if the affected buildings were constructed by using proper guidelines. Taking lessons from the disaster, an experimental investigation, based on typical geometry and precompression levels of the URBM shear walls in the affected region, was conducted to evaluate their seismic performance. Twelve walls were tested in the in-plane direction using quasi-static cyclic loading. First-story drift ratios for various performance levels in URBM buildings are proposed. The influences of relative precompression level and aspect ratio on the damage pattern, ultimate drift ratio, and equivalent viscous damping of the walls are examined.


1988 ◽  
Vol 4 (1) ◽  
pp. 181-196 ◽  
Author(s):  
G. C. Hart ◽  
J. Kariotis ◽  
J. L. Noland

The observed earthquake response of unreinforced and reinforced masonry buildings during the October 1 and 4, 1987 Whittier Narrows Earthquakes was documented in a comprehensive building survey. This paper describes the extent of the survey, the type of data collected and a preliminary summary of some survey results.


2021 ◽  
Vol 141 ◽  
pp. 106501
Author(s):  
Daniele Losanno ◽  
Nagavinothini Ravichandran ◽  
Fulvio Parisi ◽  
Andrea Calabrese ◽  
Giorgio Serino

Sign in / Sign up

Export Citation Format

Share Document