Out-of-Plane Behavior of Slender Reinforced Masonry Shear Walls under In-Plane Loading: Experimental Investigation

2018 ◽  
Vol 144 (3) ◽  
pp. 04018008 ◽  
Author(s):  
B. R. Robazza ◽  
S. Brzev ◽  
T. Y. Yang ◽  
K. J. Elwood ◽  
D. L. Anderson ◽  
...  
2019 ◽  
Vol 145 (8) ◽  
pp. 04019073 ◽  
Author(s):  
Tarek El-Hashimy ◽  
Mohamed Ezzeldin ◽  
Michael Tait ◽  
Wael El-Dakhakhni

2017 ◽  
Vol 44 (5) ◽  
pp. 367-376 ◽  
Author(s):  
Nazli Azimikor ◽  
Svetlana Brzev ◽  
Kenneth J. Elwood ◽  
Donald L. Anderson ◽  
William McEwen

Results of a study performed on the out-of-plane instability of reinforced masonry shear walls (RMSW) under seismic loading are presented. The study was conducted to gain understanding of the out-of-plane instability mechanism and the key factors influencing its development through the testing of five reinforced masonry uniaxial specimens under reversed cyclic tension and compression. The specimens represented the end zone of a RMSW. The design parameters considered in the study included longitudinal reinforcement ratio and height-to-thickness ratio for the test specimens. It was found that onset of out-of-plane instability is strongly influenced by the level of tensile strains developed in the specimens, the reinforcement ratio, and the bar size. In this case, out-of-plane instability occurred when out-of-plane displacements exceeded the critical value equal to half the wall thickness. A study on full-scale RMSW specimens subjected to reversed cyclic loading, also undertaken under this research program, is expected to verify the findings of this study and contribute towards development of design criteria for out-of-plane stability of RMSW.


2019 ◽  
Vol 145 (11) ◽  
pp. 04019127 ◽  
Author(s):  
Shady Salem ◽  
Mohamed Ezzeldin ◽  
Wael El-Dakhakhni ◽  
Michael Tait

2018 ◽  
Vol 45 (11) ◽  
pp. 936-946
Author(s):  
Henry P. Miranda ◽  
Lisa R. Feldman ◽  
Bruce F. Sparling

The use of grout in conventional reinforced masonry construction increases the cost and time of construction but allows walls subject to out-of-plane loads an enhanced ability to span between lateral support levels. An experimental investigation including a total of 21 walls was conducted in an attempt to identify potential alternatives to conventionally grouted walls. The strength and serviceability of walls containing unbonded reinforcement anchored at its ends was evaluated. All walls were two and a half blocks wide and 14 courses tall and were constructed in running bond using standard 200 mm concrete blocks. Six replicate unreinforced and partially grouted, conventionally reinforced walls served as control specimens. Walls with unbonded reinforcement were determined to be inherently stable with maximum loads approaching those of partially grouted, conventionally reinforced walls. If used in practice, these walls would need to be limited to indoor exposures due to the wide crack widths that develop.


2021 ◽  
Vol 11 (10) ◽  
pp. 4421
Author(s):  
Zhiming Zhang ◽  
Fenglai Wang

In this study, four single-story reinforced masonry shear walls (RMSWs) (two prefabricated and two cast-in-place) under reversed cyclic loading were tested to evaluate their seismic performance. The aim of the study was to evaluate the shear behavior of RMSWs with flanges at the wall ends as well as the effect of construction method. The test results showed that all specimens had a similar failure mode with diagonal cracking. However, the crack distribution was strongly influenced by the construction method. The lateral capacity of the prefabricated walls was 12% and 27% higher than that of the corresponding cast-in-place walls with respect to the rectangular and T-shaped cross sections. The prefabricated walls showed better post-cracking performance than did the cast-in-place wall. The secant stiffness of all the walls decreased rapidly to approximately 63% of the initial stiffness when the first major diagonal crack was observed. The idealized equivalent elastic-plastic system showed that the prefabricated walls had a greater displacement ductility of 3.2–4.8 than that of the cast-in-place walls with a displacement ductility value of 2.3–2.7. This proved that the vertical joints in prefabricated RMSWs enhanced the seismic performance of walls in shear capacity and ductility. In addition, the equivalent viscous damping of the specimens ranged from 0.13 to 0.26 for prefabricated and cast-in-place walls, respectively.


Author(s):  
Yiming Ma ◽  
Liusheng He ◽  
Ming Li

Steel slit shear walls (SSSWs), made by cutting slits in steel plates, are increasingly adopted in seismic design of buildings for energy dissipation. This paper estimates the seismic energy dissipation capacity of SSSWs considering out-of-plane buckling. In the experimental study, three SSSW specimens were designed with different width-thickness ratios and aspect ratios and tested under quasi-static cyclic loading. Test results showed that the width-thickness ratio of the links dominated the occurrence of out-of-plane buckling, which produced pinching in the hysteresis and thus reduced the energy dissipation capacity. Out-of-plane buckling occurred earlier for the links with a larger width-thickness ratio, and vice versa. Refined finite element model was built for the SSSW specimens, and validated by the test results. The concept of average pinching parameter was proposed to quantify the degree of pinching in the hysteresis. Through the parametric analysis, an equation was derived to estimate the average pinching parameter of the SSSWs with different design parameters. A new method for estimating the energy dissipation of the SSSWs considering out-of-plane buckling was proposed, by which the predicted energy dissipation agreed well with the test results.


Author(s):  
Yoshimichi Kawai ◽  
Shigeaki Tohnai ◽  
Shinichiro Hashimoto ◽  
Atsushi Sato ◽  
Tetsuro Ono

<p>Steel sheet shear walls with cold formed edge stiffened burring holes are applied to low- to mid-rise housings in seismically active and typhoon- or hurricane-prone regions. A configuration with burrs on the inside and smooth on the outside enables the construction of omitting the machining of holes for equipments and thinner walls with simplified attachments of finishings. In-plane shear experiments and finite element analyses revealed that the walls allowed shear stress to concentrate in intervals between the burring holes. The walls maintained stable shear load and large deformation behavior, and the deformation areas were limited in the intervals and a large out-of-plane waveform in a sheet was effectively prevented owing to edge stiffened burring ribs. The design methods are developed for evaluating the shear load of the walls at story angle from zero to 1/100, using the idea of decreasing the band width of the inclined tension fields on the intervals with the effects of the thickness.</p>


Sign in / Sign up

Export Citation Format

Share Document