Validation of a Numerical Model for Prediction of Out-of-Plane Instability in Ductile Structural Walls under Concentric In-Plane Cyclic Loading

2018 ◽  
Vol 144 (6) ◽  
pp. 04018039 ◽  
Author(s):  
Farhad Dashti ◽  
Rajesh P. Dhakal ◽  
Stefano Pampanin
2017 ◽  
Vol 143 (3) ◽  
pp. 04016182 ◽  
Author(s):  
C. Kelly Herrick ◽  
Mervyn J. Kowalsky

2019 ◽  
Vol 13 (1) ◽  
pp. 135-148 ◽  
Author(s):  
Christiana A. Filippou ◽  
Nicholas C. Kyriakides ◽  
Christis Z. Chrysostomou

Background: The behavior of masonry-infilled Reinforced Concrete (RC) frame structures during an earthquake, has attracted the attention of structural engineers since the 1950s. Experimental and numerical studies have been carried out to investigate the behavior of masonry-infilled RC frame under in-plane loading. Objective: This paper presents a numerical model of the behavior existing masonry-infilled RC frame that was studied experimentally at the University of Patra. The objective of the present study is to identify suitable numerical constitutive models for each component of the structural system in order to create a numerical tool to model the masonry infilled RC frames in-plane behavior by accounting the frame-infill separation. Methods: A 2D masonry-infilled RC frame was developed in DIANA Finite Element Analysis (FEA) software and an eigenvalue and nonlinear structural cyclic analyses were performed. It is a 2:3 scale three-story structure with non-seismic design and detailing, subjected to in-plane cyclic loading through displacement control analysis. Results: There is a good agreement between the numerical model and experimental results through a nonlinear cyclic analysis. It was found that the numerical model has the capability to predict the initial stiffness, the ultimate stiffness, the maximum shear-force capacity, cracking- patterns and the possible failure mode of masonry-infilled RC frame. Conclusion: Therefore, this model is a reliable model of the behavior of masonry-infilled RC frame under cyclic loading including the frame-infill separation (gap opening).


2019 ◽  
Vol 9 (11) ◽  
pp. 2372 ◽  
Author(s):  
Andrea Sellitto ◽  
Salvatore Saputo ◽  
Francesco Di Caprio ◽  
Aniello Riccio ◽  
Angela Russo ◽  
...  

Composite laminates are characterized by high mechanical in-plane properties and poor out-of-plane characteristics. This issue becomes even more relevant when dealing with impact phenomena occurring in the transverse direction. In aeronautics, Low Velocity Impacts (LVIs) may occur during the service life of the aircraft. LVI may produce damage inside the laminate, which are not easily detectable and can seriously degrade the mechanical properties of the structure. In this paper, a numerical-experimental investigation is carried out, in order to study the mechanical behavior of rectangular laminated specimens subjected to low velocity impacts. The numerical model that best represents the impact phenomenon has been chosen by numerical–analytical investigations. A user defined material model (VUMAT) has been developed in Abaqus/Explicit environment to simulate the composite intra-laminar damage behavior in solid elements. The analyses results were compared to experimental test data on a laminated specimen, performed according to ASTM D7136 standard, in order to verify the robustness of the adopted numerical model and the influence of modeling parameters on the accuracy of numerical results.


2014 ◽  
Vol 17 (11) ◽  
pp. 1567-1583 ◽  
Author(s):  
Saleem M. Umair ◽  
Muneyoshi Numada ◽  
Kimiro Meguro

In current research work, an attempt is made to simulate the behavior of a newly proposed composite material using 3-D Applied Element Method (AEM). Fiber Reinforced Polymer (FRP) being a strong material provides a significant increase in shear strength. Polypropylene band (PP-band) not only holds the masonry wall system into a single unit but also provides a fairly high deformation capacity at a very low cost of retrofitting. A composite of FRP and PP-band is proposed and applied on the surface of masonry wall. Verification of the proposed numerical model is achieved by conducting experiments on twelve masonry wallets. Out of twelve, six masonry wallets were tested in out of plane bending test and six were tested under in-plane forces in the form of diagonal compression test. Same wallet retrofitting scheme was selected for in-plane and out of plane experiments and all of them were analyzed using proposed 3-D AEM numerical simulation tool. Proposed numerical model has served satisfactory and has shown a fairly good agreement with experimental results which encourages the use of 3D-AEM to numerically simulate the behavior of non-retrofitted and retrofitted masonry wallets.


2020 ◽  
Vol 18 (11) ◽  
pp. 5193-5220
Author(s):  
Farhad Dashti ◽  
Mayank Tripathi ◽  
Rajesh P. Dhakal ◽  
Stefano Pampanin

2020 ◽  
Vol 6 (42) ◽  
pp. eabb1335
Author(s):  
Teng Cui ◽  
Kevin Yip ◽  
Aly Hassan ◽  
Guorui Wang ◽  
Xingjian Liu ◽  
...  

Graphene is often in contact with other materials through weak van der Waals (vdW) interactions. Of particular interest is the graphene-polymer interface, which is constantly subjected to dynamic loading in applications, including flexible electronics and multifunctional coatings. Through in situ cyclic loading, we directly observed interfacial fatigue propagation at the graphene-polymer interface, which was revealed to satisfy a modified Paris’ law. Furthermore, cyclic loading through vdW contact was able to cause fatigue fracture of even pristine graphene through a combined in-plane shear and out-of-plane tear mechanism. Shear fracture was found to mainly initiate at the fold junctions induced by cyclic loading and propagate parallel to the loading direction. Fracture mechanics analysis was conducted to explain the kinetics of an exotic self-tearing behavior of graphene during cyclic loading. This work offers mechanistic insights into the dynamic reliability of graphene and graphene-polymer interface, which could facilitate the durable design of graphene-based structures.


Sign in / Sign up

Export Citation Format

Share Document