Applied Element Method Simulation of Fiber Reinforced Polymer and Polypropylene Composite Retrofitted Masonry Walls

2014 ◽  
Vol 17 (11) ◽  
pp. 1567-1583 ◽  
Author(s):  
Saleem M. Umair ◽  
Muneyoshi Numada ◽  
Kimiro Meguro

In current research work, an attempt is made to simulate the behavior of a newly proposed composite material using 3-D Applied Element Method (AEM). Fiber Reinforced Polymer (FRP) being a strong material provides a significant increase in shear strength. Polypropylene band (PP-band) not only holds the masonry wall system into a single unit but also provides a fairly high deformation capacity at a very low cost of retrofitting. A composite of FRP and PP-band is proposed and applied on the surface of masonry wall. Verification of the proposed numerical model is achieved by conducting experiments on twelve masonry wallets. Out of twelve, six masonry wallets were tested in out of plane bending test and six were tested under in-plane forces in the form of diagonal compression test. Same wallet retrofitting scheme was selected for in-plane and out of plane experiments and all of them were analyzed using proposed 3-D AEM numerical simulation tool. Proposed numerical model has served satisfactory and has shown a fairly good agreement with experimental results which encourages the use of 3D-AEM to numerically simulate the behavior of non-retrofitted and retrofitted masonry wallets.

2010 ◽  
Vol 168-170 ◽  
pp. 549-552
Author(s):  
Yan Lei Wang ◽  
Qing Duo Hao ◽  
Jin Ping Ou

A new form of fiber reinforced polymer (FRP)-concrete composite beam is proposed in this study. The proposed composite beam consists of a GFRP box beam combined with a thin layer of concrete in the compression zone. The interaction between the GFRP beam and the concrete was obtained by bonding coarse-sand on the top flange of the GFRP beam. One GFRP box beam and one GFRP-concrete composite beam were investigated in four-point bending test. Load-deflection response, mid-span longitudinal strain distributions and interface slip between GFRP beam and the concrete for the proposed composite beam were studied. Following conclusions are drawn from this study: (1) the stiffness and strength of the composite beam has been significantly increased, and the cost-to-stiffness ratio of the composite beam has been drastically reduced comparing with GFRP-only box beam; (2) a good composite action has been achieved between the GFRP beam and the concrete; (3) crushing of concrete in compression defines flexural collapse of the proposed composite beam..


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mervin Ealiyas Mathews ◽  
Anand N ◽  
Diana Andrushia A ◽  
Tattukolla Kiran ◽  
Khalifa Al-Jabri

PurposeBuilding elements that are damaged by fire are often strengthened by fiber wrapping techniques. Self-compacting concrete (SCC) is an advanced building material that is widely used in construction due to its ability to flow and pass through congested reinforcement and fill the required areas easily without compaction. The aim of the research work is to examine the flexural behavior of SCC subjected to elevated temperature. This research work examines the effect of natural air cooling (AC) and water cooling (WC) on flexural behavior of M20, M30, M40 and M50 grade fire-affected retro-fitted SCC. The results of the investigation will enable the designers to choose the appropriate repair technique for improving the service life of structures.Design/methodology/approachIn this study, an attempt has been made to evaluate the flexural behavior of fire exposed reinforced SCC beams retrofitted with laminates of carbon fiber reinforced polymer (CFRP), basalt fiber reinforced polymer (BFRP) and glass fiber reinforced polymer (GFRP). Beam specimens were cast with M20, M30, M40 and M50 grades of SCC and heated to 925ºC using an electrical furnace for 60 min duration following ISO 834 standard fire curve. The heated SCC beams were cooled by either natural air or water spraying.FindingsThe reduction in the ultimate load carrying capacity of heated beams was about 42% and 55% for M50 grade specimens that were cooled by air and water, respectively, in comparison with the reference specimens. The increase in the ultimate load was 54%, 38% and 27% for the specimens retrofitted with CFRP, BFRP and GFRP, respectively, compared with the fire-affected specimens cooled by natural air. Water-cooled specimens had shown higher level of damage than the air-cooled specimens. The specimens wrapped with carbon fiber could able to improve the flexural strength than basalt and glass fiber wrapping.Originality/valueSCC, being a high performance concrete, is essential to evaluate the performance under fire conditions. This research work provides the flexural behavior and physical characteristics of SCC subjected to elevated temperature as per ISO rate of heating. In addition attempt has been made to enhance the flexural strength of fire-exposed SCC with wrapping using different fibers. The experimental data will enable the engineers to choose the appropriate material for retrofitting.


2018 ◽  
Vol 174 ◽  
pp. 04013 ◽  
Author(s):  
Marta Kosior-Kazberuk ◽  
Rafał Wasilczyk

The purpose of this study was to define the influence of static longterm loads and cyclic freezing/thawing on the deflections and cracking of concrete beams with non-metallic reinforcement. The rods made of basalt fiber reinforced polymer (BFRP) and hybrid fiber reinforced polymer (HFRP) were used as non-metallic reinforcement. Four series of single span beams were loaded with a single static force in a three-point bending test, then specimens were subjected to 150 freezing/thawing cycles in a large-size climatic chamber. The experimental test results were compared to those obtained from prior carried out short-term tests and theoretical calculations based on ACI 440:1R-06 standard concerning concrete element with non-metallic reinforcement.


2019 ◽  
Vol 9 (8) ◽  
pp. 923-930
Author(s):  
Ning Zhuang ◽  
Junzhou Chen ◽  
Miao Zheng ◽  
Da Chen

Flexural capacity of RC beams gets significant improvement with externally bonded Carbon Fiber-reinforced Polymer (CFRP) sheet. The anchorage system is a valid means to restrain or delay debonding failure caused by stress concentration at the ends of CFRP sheets. In this paper, four RC beams, measuring 150 × 200 × 1900 mm, were examined under four-point bending test. One beam was applied for contrast. And other three were CFRP strengthened with no anchorage, CF anchors (carbon fiber anchors) and U-wraps (U-shaped CFRP wraps). The primary purpose of the experiment was to validate the effectiveness of CF anchors and U-wraps in improving the flexure character of beams strengthened with CFRP sheets. The experimental results revealed that the strengthened beams using anchorage systems performed remarkably in beam ductility, flexural capacity, load-deflection response and failure mode compared with the contrast beam. The anchorage systems were more effective and necessary to enhance the flexural behavior of beams as using CFRP laminates for flexural strengthening.


Sign in / Sign up

Export Citation Format

Share Document