New Self-Centering Tension-Only Brace Using Resilient Slip-Friction Joint: Experimental Tests and Numerical Analysis

2020 ◽  
Vol 146 (10) ◽  
pp. 04020219 ◽  
Author(s):  
Hamed Bagheri ◽  
Ashkan Hashemi ◽  
S. M. M. Yousef-Beik ◽  
Pouyan Zarnani ◽  
Pierre Quenneville
Aerospace ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 104
Author(s):  
Dong-Hyeop Kim ◽  
Young-Cheol Kim ◽  
Sang-Woo Kim

Airworthiness standards of Korea recommend verifying structural safety by experimental tests and analytical methods, owing to the development of analysis technology. In this study, we propose a methodology to verify the structural safety of aircraft components based on airworthiness requirements using an analytical method. The structural safety and fatigue integrity of a linear actuator for flap control of aircraft was evaluated through numerical analysis. The static and fatigue analyses for the given loads obtained from the multibody dynamics analysis were performed using the finite element method. Subsequently, the margin of safety and vulnerable area were acquired and the feasibility of the structural safety evaluation using the analytical method was confirmed. The proposed numerical analysis method in this study can be adopted as an analytical verification methodology for the airworthiness standards of civilian aircraft in Korea.


2015 ◽  
Vol 22 (5) ◽  
pp. 585-596 ◽  
Author(s):  
Damian BEBEN ◽  
Adam STRYCZEK

The paper presents a numerical analysis of corrugated steel plate (CSP) bridge with reinforced concrete (RC) relieving slab under static loads. Calculations were made based on the finite element method using Abaqus software. Two computation models were used; in the first one, RC slab was used, and the other was without it. The effect of RC slab to deformations of CSP shell was determined. Comparing the computational results from two numerical models, it can be concluded that when the relieving slab is applied, substantial reductions in displacements, stresses, bending mo­ments and axial thrusts are achieved. Relative reductions of displacements were in the range of 53–66%, and stresses of 73–82%. Maximum displacements and bending moments were obtained at the shell crown, and maximum stresses and axial thrusts at the quarter points. The calculation results were also compared to the values from experimental tests. The course of computed displacements and stresses is similar to those obtained from experimental tests, although the absolute values were generally higher than the measured ones. Results of numerical analyses can be useful for bridge engineering, with particular regard to bridges and culverts made from corrugated steel plates for the range of necessity of using additional relieving elements.


2019 ◽  
Vol 137 ◽  
pp. 01004
Author(s):  
Sebastian Werle ◽  
Szymon Sobek ◽  
Zuzanna Kaczor ◽  
Łukasz Ziółkowski ◽  
Zbigniew Buliński ◽  
...  

Paper present the experimental and numerical analysis of biomass photopyrolysis process. The experimental tests is performed on the solar pyrolysis installation, designed in Institute of Thermal Technology, Gliwice. It consist of the copper reactor powered by artificial light simulating sun. The paper shows the result of the solar pyrolysis of wood. The yield of the main fraction as a function of the process temperature is presented. Additionally the gas composition is determined. The numerical model is prepared in the Ansys Fluent 18.2 software, which allow at the same time for capturing geometry of the real system and easy change of input data. The results indicate that both the product yields (liquid, solid and gaseous) and gas components shares are strongly influenced by pyrolysis parameters and feedstock composition.


Sensors ◽  
2019 ◽  
Vol 19 (23) ◽  
pp. 5184 ◽  
Author(s):  
Roland Ryndzionek ◽  
Łukasz Sienkiewicz ◽  
Michał Michna ◽  
Filip Kutt

This paper represents a numerical and experimental investigation of the multicell piezoelectric motor. The proposed design consists of three individual cells that are integrated into the stator, double rotor, and a preload system combined into a symmetrical structure of the motor. Each of the cells is characterized by a traveling wave and rotating mode motor. A finite element numerical analysis is carried out to obtain optimal geometrical dimensions of the individual cell in terms of generated vibrations and resonant frequencies of the structure. The results of the numerical analysis are compared with analytical calculations based on the equivalent circuit theory. Experimental tests are also presented, including laser interferometry measurements of vibrations generated at the surface of the stator, impedance analysis, as well as measurements of mechanical characteristics of the complete motor. The final stage of the study concludes that the presented motor can provide relatively high torque compared with other traveling wave rotary motors.


2019 ◽  
Vol 946 ◽  
pp. 775-781
Author(s):  
E.V. Timakov ◽  
F.S. Dubinskiy

In this paper, the ABAQUS is adopted to carry on numerical simulation on straightening process of R65 heavy rail. The straightening process has been simulated here using the FE package of ABAQUS. All the input data were extracted from experimental tests according to tail manufacturing. Moreover, initial camber of the rail was measured after hot rolling and cooling process.


2016 ◽  
Vol 62 (3) ◽  
pp. 207-224 ◽  
Author(s):  
M. Superczyńska ◽  
K. Józefiak ◽  
A. Zbiciak

Abstract The paper presents results of numerical calculations of a diaphragm wall model executed in Poznań clay formation. Two selected FEM codes were applied, Plaxis and Abaqus. Geological description of Poznań clay formation in Poland as well as geotechnical conditions on construction site in Warsaw city area were presented. The constitutive models of clay implemented both in Plaxis and Abaqus were discussed. The parameters of the Poznań clay constitutive models were assumed based on authors’ experimental tests. The results of numerical analysis were compared taking into account the measured values of horizontal displacements.


2018 ◽  
Vol 219 ◽  
pp. 02015
Author(s):  
Piątkowski Michał

The article presents graphical methods for determine critical loads of column and beam elements based on experimental results. The author presents the principles of using each method and the results of author's experimental tests on the instability phenomenon of planar steel truss with imperfections. The discussed methods were used to determine critical load of the tested truss, next compared with the results of numerical analysis. The validity of methods for determining the critical moment in the truss analysis has been confirmed.


2017 ◽  
Vol 23 (7) ◽  
pp. 868-879 ◽  
Author(s):  
Ivan GLIŠOVIĆ ◽  
Marko PAVLOVIĆ ◽  
Boško STEVANOVIĆ ◽  
Marija TODOROVIĆ

This paper presents an analysis of bending behaviour of glued laminated timber (glulam) beams reinforced with carbon fibre reinforced polymer (CFRP) plates, based on finite element numerical modelling. Nonlinear 3-dimen­sional model was developed and validated by experimental tests carried out on unreinforced beams and beams reinforced with two different reinforcement arrangements. Suitable constitutive relationships for each material were utilised in the model, as well as anisotropic plasticity theory for timber in compression. Adhesive bond between CFRP plate and timber was modelled as a perfect connection. Beam failure in the model was defined by maximum stress criterion. The predicted behaviour of beams has shown good agreement with the experimental results in relation to load-deflection relationship, ultimate load, elastic stiffness and strain profile distribution. The non-linear behaviour of reinforced beams before failure was also achieved in the numerical analysis, confirming the finite element model to be accurate past the linear-elastic range. Experimentally tested reinforced beams usually failed in tensile zone after compressive plasticiza­tion of top lamination, which was also simulated in the numerical model. The results proved that the load carrying ca­pacity, stiffness and ductility of glulam beams were successfully increased by addition of CFRP plate at tension side of the section.


Sign in / Sign up

Export Citation Format

Share Document