Evaluation of Design Equations for Critical Properties of Reinforced Elastomeric Bearings and Recommended Revisions

2021 ◽  
Vol 147 (9) ◽  
pp. 04021133
Author(s):  
Niel C. Van Engelen
1980 ◽  
Vol 45 (4) ◽  
pp. 977-983 ◽  
Author(s):  
Jan Sýs ◽  
Anatol Malijevský

An empirical equation of state was proposed, which is based on pseudoexperimental data on the state behaviour. The equation can be used at reduced temperatures from the range 0.7-100.0 and reduced densities up to 2. Calculated compressibility factors and critical properties agree well with available literature data.


2021 ◽  
Vol 5 (7) ◽  
pp. 170
Author(s):  
Pablo Castillo Ruano ◽  
Alfred Strauss

In recent years, interest in low-cost seismic isolation systems has increased. The replacement of the steel reinforcement in conventional elastomeric bearings for a carbon fiber reinforcement is a possible solution and has garnered increasing attention. To investigate the response of fiber-reinforced elastomeric bearings (FREBs) under seismic loads, it is fundamental to understand its mechanical behavior under combined vertical and horizontal loads. An experimental investigation of the components presents complexities due to the high loads and displacements tested. The use of a finite element analysis can save time and resources by avoiding partially expensive experimental campaigns and by extending the number of geometries and topologies to be analyzed. In this work, a numerical model for carbon fiber-reinforced bearings is implemented, calibrated, and validated and a set of virtual experiments is designed to investigate the behavior of the bearings under combined compressive and lateral loading. Special focus is paid to detailed modeling of the constituent materials. The elastomeric matrix is modeled using a phenomenological rheological model based on the hyperelastic formulation developed by Yeoh and nonlinear viscoelasticity. The model aims to account for the hysteretic nonlinear hyper-viscoelastic behavior using a rheological formulation that takes into consideration hyperelasticity and nonlinear viscoelasticity and is calibrated using a series of experiments, including uniaxial tension tests, planar tests, and relaxation tests. Special interest is paid to capturing the energy dissipated in the unbonded fiber-reinforced elastomeric bearing in an accurate manner. The agreement between the numerical results and the experimental data is assessed, and the influence of parameters such as shape factor, aspect ratio, vertical pressure, and fiber reinforcement orientation on stress distribution in the bearings as well as in the mechanical properties is discussed.


1972 ◽  
Vol 28 (13) ◽  
pp. 823-825 ◽  
Author(s):  
H. K. Charles ◽  
R. I. Joseph
Keyword(s):  

2020 ◽  
Vol 11 (1) ◽  
pp. 82
Author(s):  
Fabio Mazza ◽  
Mirko Mazza

Elastomeric bearings are commonly used in base-isolation systems to protect the structures from earthquake damages. Their design is usually developed by using nonlinear models where only the effects of shear and compressive loads are considered, but uncertainties still remain about consequences of the tensile loads produced by severe earthquakes like the near-fault ones. The present work aims to highlight the relapses of tension on the response of bearings and superstructure. To this end, three-, seven- and ten-storey r.c. framed buildings are designed in line with the current Italian seismic code, with a base-isolation system constituted of High-Damping-Rubber Bearings (HDRBs) designed for three values of the ratio between the vertical and horizontal stiffnesses. Experimental and analytical results available in literature are used to propose a unified nonlinear model of the HDRBs, including cavitation and post-cavitation of the elastomer. Nonlinear incremental dynamic analyses of the test structures are carried out using a homemade computer code, where other models of HDRBs considering only some nonlinear phenomena are implemented. Near-fault earthquakes with comparable horizontal and vertical components, prevailing horizontal component and prevailing vertical component are considered as seismic input. Numerical results highlight that a precautionary estimation of response parameters of the HDRBs is attained referring to the proposed model, while its effects on the nonlinear response of the superstructure are less conservative.


2021 ◽  
pp. 115234
Author(s):  
B. Ibarra-Tandi ◽  
J.A. Moreno-Razo ◽  
J. Munguía-Valadez ◽  
J. López-Lemus ◽  
M.A. Chávez-Rojo

Sign in / Sign up

Export Citation Format

Share Document