Effect of Riparian Vegetation Density on Stream Flow Velocity

Author(s):  
Taner Pirim ◽  
Sean Bennett ◽  
Brian Barkdoll
2012 ◽  
Vol 91 (1-2) ◽  
pp. 245-255 ◽  
Author(s):  
S.D. Keesstra ◽  
E. Kondrlova ◽  
A. Czajka ◽  
M. Seeger ◽  
J. Maroulis

AbstractThe state of river channels and their riparian zones in terms of geomorphology and vegetation has a significant effect on water and sediment transport in headwater catchments. High roughness in natural rivers due to vegetation and geomorphological attributes generate drag on flowing water. This drag will slow water discharge, which in turn influences the sediment dynamics of the flow. The impacts of changes in the management of rivers and their riparian zone (either by catchment managers or river restoration plans) impacts both up- as well as downstream reaches, and should be assessed holistically prior to the implementation of these plans.To assess the river's current state as well as any possible changes in geomorphology and vegetation in and around the river, effective approaches to characterise the river are needed. In this paper, we present a practical approach for making detailed surveys of relevant river attributes. This methodology has the benefit of being both detailed – describing river depth, width, channel morphology, erosive features and vegetation types – but also being practical in terms of time management. This is accomplished by identifying and describing characteristic benchmark reaches (typical sites) in detail against which the remainder of the river course can be rated. Using this method, a large river stretch can be assessed in a relatively short period while still retrieving high quality data for the total river course. In this way, models with high data requirements for assessing the condition of a river course, can be parameterised without major investments on field surveys.In a small headwater catchment (23 km2) in southwestern Poland, this field methodology was used to retrieve data to run an existing model (HEC-GeoRAS) which can assess the impact of changes in the riparian and channel vegetation and channel management on sedimentation processes and stream flow velocity. This model determines the impact of channel morphology and in-channel and riparian vegetation on stream flow and sediment transport. Using four return periods of flooding (2, 10, 20 and 100 years), two opposing channel management / morphology scenarios were run; a natural channel and a fully regulated channel. The modelling results show an increase in the effect of riparian vegetation / geomorphology with an increase in return period of the modeled peak discharge. More natural channel form and increased roughness reduces the stream flow velocity due to increasing drag from flow obstructions (vegetation and channel morphological features). The higher the flood water stage, the greater the drag due to vegetation on the floodplains of natural river reaches compared to channelised sections. Slower flow rates have an impact on sediment mobilisation and transport in the river.


Hydrology ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 176
Author(s):  
István Fehérváry ◽  
Tímea Kiss

The most crucial function of lowland-confined floodplains with low slopes is to support flood conveyance and fasten floods; however, obstacles can hinder it. The management of riparian vegetation is often neglected, though woody species increase the vegetation roughness of floodplains and increase flood levels. The aims are (1) to determine the branch density of various riparian vegetation types in the flood conveyance zone up to the level of artificial levees (up to 5 m), and (2) to assess the spatial distribution of densely vegetated patches. Applying a decision tree and machine learning, six vegetation types were identified with an accuracy of 83%. The vegetation density was determined within each type by applying the normalized relative point density (NRD) method. Besides, vegetation density was calculated in each submerged vegetation zone (1–2 m, 2–3 m, etc.). Thus, the obstacles for floods with various frequencies were mapped. In the study area, young poplar plantations offer the most favorable flood conveyance conditions, whereas invasive Amorpha thickets and the dense stands of native willow forests provide the worst conditions for flood conveyance. Dense and very dense vegetation patches are common in all submerged vegetation zones; thus, vegetation could heavily influence floods.


2014 ◽  
Vol 14 (3) ◽  
pp. 625-634 ◽  
Author(s):  
N. N. Kourgialas ◽  
G. P. Karatzas

Abstract. A modeling system for the estimation of flash flood flow velocity and sediment transport is developed in this study. The system comprises three components: (a) a modeling framework based on the hydrological model HSPF, (b) the hydrodynamic module of the hydraulic model MIKE 11 (quasi-2-D), and (c) the advection–dispersion module of MIKE 11 as a sediment transport model. An important parameter in hydraulic modeling is the Manning's coefficient, an indicator of the channel resistance which is directly dependent on riparian vegetation changes. Riparian vegetation's effect on flood propagation parameters such as water depth (inundation), discharge, flow velocity, and sediment transport load is investigated in this study. Based on the obtained results, when the weed-cutting percentage is increased, the flood wave depth decreases while flow discharge, velocity and sediment transport load increase. The proposed modeling system is used to evaluate and illustrate the flood hazard for different riparian vegetation cutting scenarios. For the estimation of flood hazard, a combination of the flood propagation characteristics of water depth, flow velocity and sediment load was used. Next, a well-balanced selection of the most appropriate agricultural cutting practices of riparian vegetation was performed. Ultimately, the model results obtained for different agricultural cutting practice scenarios can be employed to create flood protection measures for flood-prone areas. The proposed methodology was applied to the downstream part of a small Mediterranean river basin in Crete, Greece.


2013 ◽  
Vol 1 (5) ◽  
pp. 5855-5880 ◽  
Author(s):  
N. N. Kourgialas ◽  
G. P. Karatzas

Abstract. A modelling system for the estimation of flash flood flow characteristics and sediment transport is developed in this study. The system comprises of three components: (a) a modelling framework based on the hydrological model HSPF, (b) the hydrodynamic module of the hydraulic model MIKE 11 (quasi-2-D), and (c) the advection-dispersion module of MIKE 11 as a sediment transport model. An important parameter in hydraulic modelling is the Manning's coefficient, an indicator of the channel resistance which is directly depended on riparian vegetation changes. Riparian vegetation effect on flood propagation parameters such as water depth (inundation), discharge, flow velocity, and sediment transport load is investigated in this study. Based on the obtained results, when the weed cutting percentage is increased, the flood wave depth decreases while flow discharge, velocity and sediment transport load increase. The proposed modelling system is used to evaluate and illustrate the flood hazard for different cutting riparian vegetation scenarios. For the estimation of flood hazard, a combination of the flood propagation characteristics of water depth, flow velocity and sediment load was used. Next, an optimal selection of the most appropriate agricultural cutting practices of riparian vegetation was performed. Ultimately, the model results obtained for different agricultural cutting practice scenarios can be employed to create flood protection measures for flood prone areas. The proposed methodology was applied to the downstream part of a small mediterranean river basin in Crete, Greece.


2021 ◽  
Vol 33 (1) ◽  
Author(s):  
Sha Lou ◽  
Hao Wang ◽  
Hongzhe Liu ◽  
Guihui Zhong ◽  
Larisa Dorzhievna Radnaeva ◽  
...  

Abstract Background Flexible vegetation is an important part of the riverine ecosystem, which can reduce flow velocity, change turbulence structure, and affect the processes of solute transport. Compared with the flow with rigid vegetation, which has been reported in many previous studies, bending of flexible vegetation increases the complexity of the flow–vegetation–solute interactions. In this study, laboratory experiments are carried out to investigate the influence of flexible vegetation on solute transport, and methods for estimating the lateral and longitudinal diffusion coefficients in the rigid vegetated flow are examined for their applications to the flow with flexible vegetation. Results The experimental observations find that vegetation can significantly reduce flow velocity, and the Manning coefficient increases with increasing vegetation density and decreases with inflow discharge. Under all the cases, the vertical peak of the solute concentration moves towards the bottom bed along the flow, and the values of vertical peak concentration longitudinally decreases from the injection point. The lateral diffusion coefficients Dy increase with vegetation density, while the longitudinal diffusion coefficients DL are opposite. Both Dy and DL increase with the inflow discharge. To estimate the Dy and DL in the flow with flexible vegetation, an effective submerged vegetation height considering vegetation bending is incorporated in the methods proposed for flow with rigid vegetation (Lou et al. Environ Sci Eur 32:15, 2020). The modified approach can well predict the diffusion coefficients in the experiments with the relative errors in the range of 5%–12%. Conclusions The methods proposed in this study can be used to estimate the lateral and longitudinal diffusion coefficients in flows through both rigid and flexible vegetations using the effective submerged vegetation height.


2020 ◽  
Vol 10 (15) ◽  
pp. 5184
Author(s):  
Linlin Geng ◽  
Jian Chen ◽  
Oscar De La Torre ◽  
Xavier Escaler

A numerical investigation of the erosion aggressiveness of leading edge unsteady cloud cavitation based on the energy balance approach has been carried out to ascertain the main damaging mechanisms and the influence of the free stream flow velocity. A systematic approach has permitted the determination of the influence of several parameters on the spatial and temporal distribution of the erosion results comprising the selection of the cavitation model and the collapse driving pressure. In particular, the Zwart, Sauer and Kunz cavitation models have been compared as well as the use of instantaneous versus average pressure values. The numerical results have been compared against a series of experimental results obtained from pitting tests on copper and stainless steel specimens. Several cavitation erosion indicators have been defined and their accuracy to predict the experimental observations has been assessed and confirmed when using a material-dependent damaging threshold level. In summary, the use of the average pressure levels during a sufficient number of simulated shedding cycles combined with the Sauer cavitation model are the recommended parameters to achieve reliable results that reproduce the main erosion mechanisms found in cloud cavitation. Moreover, the proposed erosion indicators follow a power law as a function of the free stream flow velocity with exponents ranging from 3 to 5 depending on their definition.


2005 ◽  
Vol 21 (8) ◽  
pp. 925-938 ◽  
Author(s):  
Juliet C. Stromberg ◽  
Kenneth J. Bagstad ◽  
James M. Leenhouts ◽  
Sharon J. Lite ◽  
Elizabeth Makings

Sign in / Sign up

Export Citation Format

Share Document