Analysis of Fecal Coliform Bacteria in Spring Creek above Sheridan Lake in the Black Hills of South Dakota

Author(s):  
Patrick Schwickerath ◽  
Thomas Fontaine ◽  
Scott Kenner
2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Wanda Aulya ◽  
Fadhliani Fadhliani ◽  
Vivi Mardina

Water is the main source for life and also the most severe substance caused by pollution. The mandatory parameters for determining microbiological quality of drinking water are total non-fecal Coliform bacteria and Coliform fecal (Escherichia coli). Coliform bacteria are a group of microorganisms commonly used as indicators, where these bacteria can be a signal to determine whether a water source has been contaminated by bacteria or not, while fecal Coliform bacteria are indicator bacteria polluting pathogenic bacteria originating from human feces and warm-blooded animals (mammals) . The water inspection method in this study uses the MPN (Most Probable Number) method which consists of 3 tests, namely, the presumption test, the affirmation test, and the reinforcement test. The results showed that of 15 drinking water samples 8 samples were tested positive for Coliform bacteria with the highest total bacterial value of sample number 1, 15 (210/100 ml), while 7 other samples were negative. From 8 positive Coliform samples only 1 sample was stated to be negative fecal Coliform bacteria and 7 other samples were positive for Coliform fecal bacteria with the highest total bacterial value of sample number 1 (210/100 ml).


2004 ◽  
Vol 2004 (14) ◽  
pp. 707-734
Author(s):  
L. Christensen ◽  
M. Powell ◽  
M. Lindburg ◽  
M. Arends ◽  
M. Maas ◽  
...  

2007 ◽  
Vol 41 (3) ◽  
pp. 571-580 ◽  
Author(s):  
Yinan Qi ◽  
Steven K. Dentel ◽  
Diane S. Herson

2004 ◽  
Vol 39 (3) ◽  
pp. 663-679 ◽  
Author(s):  
Sangjun Im ◽  
Kevin M. Brannan ◽  
Saied Mostaghimi ◽  
Jaepil Cho

2007 ◽  
Vol 73 (12) ◽  
pp. 3771-3778 ◽  
Author(s):  
Winfried B. Ksoll ◽  
Satoshi Ishii ◽  
Michael J. Sadowsky ◽  
Randall E. Hicks

ABSTRACT Epilithic periphyton communities were sampled at three sites on the Minnesota shoreline of Lake Superior from June 2004 to August 2005 to determine if fecal coliforms and Escherichia coli were present throughout the ice-free season. Fecal coliform densities increased up to 4 orders of magnitude in early summer, reached peaks of up to 1.4 � 105 CFU cm−2 by late July, and decreased during autumn. Horizontal, fluorophore-enhanced repetitive-PCR DNA fingerprint analyses indicated that the source for 2% to 44% of the E. coli bacteria isolated from these periphyton communities could be identified when compared with a library of E. coli fingerprints from animal hosts and sewage. Waterfowl were the major source (68 to 99%) of periphyton E. coli strains that could be identified. Several periphyton E. coli isolates were genotypically identical (≥92% similarity), repeatedly isolated over time, and unidentified when compared to the source library, suggesting that these strains were naturalized members of periphyton communities. If the unidentified E. coli strains from periphyton were added to the known source library, then 57% to 81% of E. coli strains from overlying waters could be identified, with waterfowl (15 to 67%), periphyton (6 to 28%), and sewage effluent (8 to 28%) being the major potential sources. Inoculated E. coli rapidly colonized natural periphyton in laboratory microcosms and persisted for several weeks, and some cells were released to the overlying water. Our results indicate that E. coli from periphyton released into waterways confounds the use of this bacterium as a reliable indicator of recent fecal pollution.


Sign in / Sign up

Export Citation Format

Share Document