Critical Parameters for the Reliability of Municipal Storage Tanks

Author(s):  
Jakobus E. Van Zyl ◽  
Olivier Piller ◽  
Yves Legat
PCI Journal ◽  
1985 ◽  
Vol 30 (4) ◽  
pp. 52-63 ◽  
Author(s):  
G. Craig Freas ◽  
Michael J. Shoemaker ◽  
Douglas Ervin
Keyword(s):  

2019 ◽  
Author(s):  
Victor Y. Suzuki ◽  
Luís Henrique Cardozo Amorin ◽  
Natália H. de Paula ◽  
Anderson R. Albuquerque ◽  
Julio Ricardo Sambrano ◽  
...  

<p>We report, for the first time, new insights into the nature of the band gap of <a>CuGeO<sub>3</sub> </a>(CGO) nanocrystals synthesized from a microwave-assisted hydrothermal method in the presence of citrate. To the best of our knowledge, this synthetic approach has the shortest reaction time and it works at the lowest temperatures reported in the literature for the preparation of these materials. The influence of the surfactant on the structural, electronic, optical, and photocatalytic properties of CGO nanocrystals is discussed by a combination of experimental and theoretical approaches, and that results elucidates the nature of the band gap of synthetized CGO nanocrystals. We believe that this particular strategy is one of the most critical parameters for the development of innovative applications and that result could shed some light on the emerging material design with entirely new properties.</p> <p><b> </b></p>


Alloy Digest ◽  
1982 ◽  
Vol 31 (5) ◽  

Abstract UNILOY 430 is a medium-chromium (17%) non-hardening, ferritic stainless steel. Of the AISI 400 series stainless steels, Uniloy 430 most nearly resembles the 18% chromium-8% nickel stainless steels in fabrication and service. It has excellent resistance to corrosion and good resistance to elevated-temperature scaling. Its many uses include architectural trim, nitric acid storage tanks and kitchen appliances. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness and creep. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-408. Producer or source: Cyclops.


Author(s):  
Nobuyuki Wakai ◽  
Yuji Kobira ◽  
Hidemitsu Egawa ◽  
Masayoshi Tsutsumi

Abstract Fundamental consideration for CDM (Charged Device Model) breakdown was investigated with 90nm technology products and others. According to the result of failure analysis, it was found that gate oxide breakdown was critical failure mode for CDM test. High speed triggered protection device such as ggNMOS and SCR (Thyristor) is effective method to improve its CDM breakdown voltage and an improvement for evaluated products were confirmed. Technological progress which is consisted of down-scaling of protection device size and huge number of IC pins of high function package makes technology vulnerable and causes significant CDM stress. Therefore, it is expected that CDM protection designing tends to become quite difficult. In order to solve these problems in the product, fundamental evaluations were performed. Those are a measurement of discharge parameter and stress time dependence of CDM breakdown voltage. Peak intensity and rise time of discharge current as critical parameters are well correlated their package capacitance. Increasing stress time causes breakdown voltage decreasing. This mechanism is similar to that of TDDB for gate oxide breakdown. Results from experiences and considerations for future CDM reliable designing are explained in this report.


Sign in / Sign up

Export Citation Format

Share Document