New Insights into the Nature of the Band Gap of CuGeO3 Nanoparticles: Synthesis, Electronic Structure, and Optical and Photocatalytic Properties

Author(s):  
Victor Y. Suzuki ◽  
Luís Henrique Cardozo Amorin ◽  
Natália H. de Paula ◽  
Anderson R. Albuquerque ◽  
Julio Ricardo Sambrano ◽  
...  

<p>We report, for the first time, new insights into the nature of the band gap of <a>CuGeO<sub>3</sub> </a>(CGO) nanocrystals synthesized from a microwave-assisted hydrothermal method in the presence of citrate. To the best of our knowledge, this synthetic approach has the shortest reaction time and it works at the lowest temperatures reported in the literature for the preparation of these materials. The influence of the surfactant on the structural, electronic, optical, and photocatalytic properties of CGO nanocrystals is discussed by a combination of experimental and theoretical approaches, and that results elucidates the nature of the band gap of synthetized CGO nanocrystals. We believe that this particular strategy is one of the most critical parameters for the development of innovative applications and that result could shed some light on the emerging material design with entirely new properties.</p> <p><b> </b></p>

2019 ◽  
Author(s):  
Victor Y. Suzuki ◽  
Luís Henrique Cardozo Amorin ◽  
Natália H. de Paula ◽  
Anderson R. Albuquerque ◽  
Julio Ricardo Sambrano ◽  
...  

<p>We report, for the first time, new insights into the nature of the band gap of <a>CuGeO<sub>3</sub> </a>(CGO) nanocrystals synthesized from a microwave-assisted hydrothermal method in the presence of citrate. To the best of our knowledge, this synthetic approach has the shortest reaction time and it works at the lowest temperatures reported in the literature for the preparation of these materials. The influence of the surfactant on the structural, electronic, optical, and photocatalytic properties of CGO nanocrystals is discussed by a combination of experimental and theoretical approaches, and that results elucidates the nature of the band gap of synthetized CGO nanocrystals. We believe that this particular strategy is one of the most critical parameters for the development of innovative applications and that result could shed some light on the emerging material design with entirely new properties.</p> <p><b> </b></p>


Molecules ◽  
2020 ◽  
Vol 25 (17) ◽  
pp. 4007
Author(s):  
Corinna Urmann ◽  
Herbert Riepl

The isomers 8-prenylnaringenin and 6-prenylnaringenin, both secondary metabolites occurring in hops, show interesting biological effects, like estrogen-like, cytotoxic, or neuro regenerative activities. Accordingly, abundant sources for this special flavonoids are needed. Extraction is not recommended due to the very low amounts present in plants and different synthesis approaches are characterized by modest yields, multiple steps, the use of expensive chemicals, or an elaborate synthesis. An easy synthesis strategy is the demethylation of xanthohumol, which is available due to hop extraction industry, using lithium chloride and dimethylformamide, but byproducts and low yield did not make this feasible until now. In this study, the demethylation of xanthohumol to 8-prenylnaringenin and 6-prenylnaringenin is described the first time and this reaction was optimized using Design of Experiment and microwave irradiation. With the optimized conditions—temperature 198 °C, 55 eq. lithium chloride, and a reaction time of 9 min, a final yield of 76% of both prenylated flavonoids is reached.


2021 ◽  
Vol 91 (7) ◽  
pp. 1189
Author(s):  
М.В. Кузьмин ◽  
М.А. Митцев

The influence of nondissociative adsorption of oxygen molecules on the electronic structure of ytterbium films with the thickness of 16 monolayers (6.08 nm) has been studied for the first time by using scanning tunneling spectroscopy. It is established that the adsorption of O2 molecules induces the metal-semiconductor transition in ytterbium. As a result of this transition, the quantum states have disappeared in the films, which evidences for a change of bonding type in the ytterbium crystal lattice, as well as the band gap of ~0.72 eV has opened.


2009 ◽  
Vol 2009 ◽  
pp. 1-22 ◽  
Author(s):  
Xiliang Nie ◽  
Shuping Zhuo ◽  
Gloria Maeng ◽  
Karl Sohlberg

This paper reviews recent investigations of the influence of dopants on the optical properties ofTiO2polymorphs. The common undoped polymorphs ofTiO2are discussed and compared. The results of recent doping efforts are tabulated, and discussed in the context of doping by elements of the same chemical group. Dopant effects on the band gap and photocatalytic activity are interpreted with reference to a simple qualitative picture of theTiO2electronic structure, which is supported with first-principles calculations.


2001 ◽  
Vol 66 (1) ◽  
pp. 139-154 ◽  
Author(s):  
M. Fátima C. Guedes Da Silva ◽  
Luísa M. D. R. S. Martins ◽  
João J. R. Fraústo Da Silva ◽  
Armando J. L. Pombeiro

The organonitrile or carbonyl complexes cis-[ReCl(RCN)(dppe)2] (1) (R = 4-Et2NC6H4 (1a), 4-MeOC6H4 (1b), 4-MeC6H4 (1c), C6H5 (1d), 4-FC6H4 (1e), 4-ClC6H4 (1f), 4-O2NC6H4 (1g), 4-ClC6H4CH2 (1h), t-Bu (1i); dppe = Ph2PCH2CH2PPh2), or cis-[ReCl(CO)(dppe)2] (2), as well as trans-[FeBr(RCN)(depe)2]BF4 (3) (R = 4-MeOC6H4 (3a), 4-MeC6H4 (3b), C6H5 (3c), 4-FC6H4 (3d), 4-O2NC6H4 (3e), Me (3f), Et (3g), 4-MeOC6H4CH2 (3h); depe = Et2PCH2CH2PEt2), novel trans-[FeBr(CO)(depe)2]BF4 (4) and trans-[FeBr2(depe)2] (5) undergo, as revealed by cyclic voltammetry at a Pt-electrode and in aprotic non-aqueous medium, two consecutive reversible or partly reversible one-electron oxidations assigned as ReI → ReII → ReIII or FeII → FeIII → FeIV. The corresponding values of the oxidation potentials IE1/2ox and IIE1/2ox (waves I and II, respectively) correlate with the Pickett's and Lever's electrochemical ligand and metal site parameters. This allows to estimate these parameters for the various nitrile ligands, depe and binding sites (for the first time for a FeIII/IV couple). The electrochemical ligand parameter show dependence on the "electron-richness" of the metal centre. The values of IE1/2ox for the ReI complexes provide some supporting for a curved overall relationship with the sum of Lever's electrochemical ligand parameter. The Pickett parametrization for closed-shell complexes is extended now also to 17-electron complexes, i.e. with the 15-electron ReII and FeIII centres in cis-{[ReCl(dppe)2]}+ and trans-{FeBr(depe)2}2+, respectively.


2021 ◽  
Vol 2 (19) ◽  
pp. 6267-6271 ◽  
Author(s):  
U. Sandhya Shenoy ◽  
D. Krishna Bhat

Extraordinary tuning of electronic structure of SnTe by Bi in the presence of Pb as a co-adjuvant dopant. Synergistic effect of resonance level, increase in the band gap, valence and conduction sub-bands convergence leads to enhanced TE performance.


2019 ◽  
Vol 7 (16) ◽  
pp. 4817-4821 ◽  
Author(s):  
U. Sandhya Shenoy ◽  
D. Krishna Bhat

Resonance states due to Bi and In co-doping, band gap enlargement, and a reduced valence-band offset in SnTe lead to a record high room-temperature ZT.


2020 ◽  
Vol 75 (8) ◽  
pp. 749-756
Author(s):  
Aavishkar Katti ◽  
Chittaranjan P. Katti

AbstractWe investigate the existence and stability of gap solitons supported by an optical lattice in biased photorefractive (PR) crystals having both the linear and quadratic electro-optic effect. Such PR crystals have an interesting interplay between the linear and quadratic nonlinearities. Gap solitons are predicted for the first time in such novel PR media. Taking a relevant example (PMN-0.33PT), we find that the gap solitons in the first finite bandgap are single humped, positive and symmetric solitons while those in the second finite band gap are antisymmetric and double humped. The power of the gap soliton depends upon the value of the axial propagation constant. We delineate three power regimes and study the gap soliton profiles in each region. The gap solitons in the first finite band gap are not linearly stable while those in the second finite band gap are found to be stable against small perturbations. We study their stability properties in detail throughout the finite band gaps. The interplay between the linear and quadratic electro-optic effect is studied by investigating the spatial profiles and stability of the gap solitons for different ratios of the linear and quadratic nonlinear coefficients.


2021 ◽  
Author(s):  
Panagiotis Kl. Barkoutsos ◽  
Fotios Gkritsis ◽  
Pauline J. Ollitrault ◽  
Igor O. Sokolov ◽  
Stefan Woerner ◽  
...  

‘Alchemical’ quantum algorithm for the simultaneous optimisation of chemical composition and electronic structure for material design. By exploiting quantum mechanical principles this approach will boost drug discovery in the near future.


2016 ◽  
Vol 27 (6) ◽  
pp. 6003-6009
Author(s):  
A. Arzola-Rubio ◽  
J. Camarillo-Cisneros ◽  
V. Collins-Martínez ◽  
S. Miranda-Navarro ◽  
A. Vega-Ríos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document