Cyclic Shear Strength of Clay under Simple Shear Condition

Author(s):  
Takeshi Kodaka ◽  
Kazuo Itabashi ◽  
Hiroki Fukuzawa ◽  
Shinjoro Kato
2005 ◽  
Vol 42 (5) ◽  
pp. 1408-1421 ◽  
Author(s):  
Dharma Wijewickreme ◽  
Maria V Sanin ◽  
Graham R Greenaway

The mechanical response of three different types of fine-grained mine tailings is examined using data from constant-volume cyclic direct simple shear (DSS) tests. Under cyclic DSS loading, fine-grained tailings typically exhibit a cumulative decrease in effective stress along with progressive degradation of shear stiffness. The observed shear strain development due to cyclic mobility is similar in form to that of the previously observed cyclic shear response for natural silts. The cyclic resistance ratio (CRR) of laterite tailings is observed to increase with an increase in the initial effective confining stress (σ′vc). For this material, the dilative tendency due to stress densification seems to have overridden the contractive tendency due to the increase in confining stress. In contrast, the CRR of copper–gold–zinc tailings is insensitive to the initial effective confining stress, suggesting a response similar to that of normally consolidated clay. The postcyclic maximum shear strength ratio (Su-PC /σ′vc) obtained from constant-volume monotonic DSS tests is noted to increase with a decrease in the void ratio. For the fine-grained tailings considered in this study, the liquefaction susceptibility predicted using commonly used empirical criteria is not always in agreement with the liquefaction triggering determined from cyclic DSS tests.Key words: tailings, liquefaction, cyclic stress ratio, postcyclic shear strength, direct simple shear testing.


2012 ◽  
Vol 594-597 ◽  
pp. 1624-1628
Author(s):  
Ping Liu ◽  
Gui Yang

The behavior of interfaces between coarse-grained soil and gravel-clay introduced by earthquake plays an important role in analyzing the stability of the impermeable structure in rock filling dams. Using the NGI-type simple shear apparatus, cyclic simple shear tests were performed to study the mechanical behaviors of the interface; shear deformations both along the interface and in the coarse-grained soil were analyzed. The test results indicate that: the cyclic shear strength of the interface was found approximately linearly proportional to the normal stress applied on the interface; meanwhile, the shear deformations reached their peak values in the first cycle, respectively; and the direction of initial shear stress significantly influenced the mode of relative displacement along the interface. In addition, shear shrinkage and shear dilation occurred alternately in each cycle. It also revealed that shear strength of the interface increases as the shear cycle increased and is approximately linear proportional to the normal stress level on the interface.


2021 ◽  
Vol 13 (23) ◽  
pp. 13224
Author(s):  
Hyeong-Gook Kim ◽  
Yong-Jun Lee ◽  
Kil-Hee Kim

This study presents a strengthening method for reinforced concrete (RC) columns. The proposed method, which consists of a pair of steel rods, two reverse-threaded couplers, and four corner blocks, is feasible and straightforward. A quasi-static cyclic loading test was performed on the columns externally strengthened by the steel rods. It was found that the corner blocks and the external steel rods with a low prestress level effectively confined the concrete on the compression side of plastic hinges, which eventually induced flexural failure with a ductility higher than three in the strengthened columns. In addition, an analytical approach to predict the shear strength and ultimate flexural strength of the externally strengthened columns was applied. The comparison of analytical and experimental results showed that the analytical approach provided highly accurate predictions on the maximum strength and the failure mode of the externally strengthened columns. It is expected that the application of the proposed method will improve the seismic performance of damaged or deteriorated RC structures, thereby increasing their lifespan expectancy and sustainability.


2020 ◽  
Vol 10 (23) ◽  
pp. 8433
Author(s):  
Hernán Patiño ◽  
Rubén Galindo ◽  
Claudio Olalla Marañón

This paper refers to cyclic shear strains (γc) and permanent shear strains (γp) of a soft cohesive soil, when both monotonic shear stresses (τo) and cyclic shear stresses (τc) are applied. The research is backed by an extensive experimental program with 139 cyclic simple shear tests that included identification and classification tests. These cyclic simple shear tests were conducted under different levels of stresses, τo, before the cyclic phase. Laboratory tests were carried out on undisturbed samples from the Port of Barcelona, located in Spain on the Mediterranean coast, and characterized by a monotonic strength (τmax) approximately equal to 30% of the initial effective vertical stress (σ′ov). The samples were taken at depths between 29 and 52 m and correspond to an initial effective vertical stress between 277 and 413 kPa, respectively. In general, the results indicate that: (a) the combination of τo and τc controls the generation of γc and γp, (b) it is not always true that when τo/σ′ov + τc/σ′ov ≈ τmax/σ′ov, the soil reaches failure cyclically, and (c) empirical relations useful for design can be established between γc, γp, and the number of cycles (N), for different relationships varying (τo/σ′ov) between 0% and 25%.


1975 ◽  
Vol 108 ◽  
pp. 145-148 ◽  
Author(s):  
William J. Astleford ◽  
Marc A. Asher ◽  
Ulric S. Lindholm ◽  
Charles A. Rockwood

Author(s):  
Heather J. Miller ◽  
Pedro de Alba ◽  
Kenneth C. Baldwin

A testing system has been developed to study the behavior of saturated sand under low-level cyclic shearing strains. The system has been used to determine threshold shear strain levels for fabric destruction in sand aged for different time periods. The system includes a special soil chamber and a direct simple shear (DSS) machine. To impose very small shearing strains, the DSS machine was designed to apply and measure horizontal deformations as small as 0.0005 mm (2 × 10−5 inches). Data obtained to date support the results of previous investigators who performed triaxial tests on freshly deposited samples, indicating a threshold cyclic shear strain level of approximately 0.01 percent. At strains in excess of those levels, destruction of the sand fabric occurred, as evidenced by a reduction in shear modulus at low strain levels. Subsequent modest increases in shear modulus were observed after the specimens were allowed to recover for 24 hours and then tested again. During the recovery period, drainage valves were left open to allow for dissipation of excess pore pressures and for potential consolidation during the short aging period. The DSS system was found to work well for low strain measurements. Furthermore, since shear strains are measured directly under DSS conditions (as opposed to triaxial conditions), the DSS system shows much promise as a device for studying parameters that may influence threshold shear strain levels and fabric evolution and destruction in sands.


Sign in / Sign up

Export Citation Format

Share Document