Sustainable Concrete for the Urban Environment: A Proposal to Increase Fly Ash Use in Concrete

Author(s):  
Andrea V. Solis ◽  
Stephan A. Durham ◽  
Kevin L. Rens ◽  
Anu Ramaswami
Structures ◽  
2021 ◽  
Vol 29 ◽  
pp. 1898-1910
Author(s):  
Samira Mahmud ◽  
Tanvir Manzur ◽  
Samina Samrose ◽  
Tafannum Torsha

2021 ◽  
Author(s):  
Davaakhuu Tserendorj ◽  
Katalin Zsuzsanna Szabó Szabó ◽  
Peter Völgyesi Völgyesi ◽  
Gorkhmaz Abbaszade ◽  
Do Le Tan Tan ◽  
...  

<p>The <sup>137</sup>Cs (t<sub>1/2</sub> =30 years) is a principal radioisotope that was artificially introduced into the environment through the atmospheric bomb tests took place from the middle of the 1940s to the 1980s and from the major nuclear accidents (i.e., Chernobyl, 1986 and Fukushima, 2011). From the atmosphere, <sup>137</sup>Cs easily adsorbs to particles and it returns to lithosphere (pedosphere) by wet and dry deposition as a radioactive fallout component. Due to the Chernobyl nuclear accident, the released contaminated air mass, containing Cs-137, largely propagated, deposited, and distributed across several European countries in the ambient environment (Balonov et al., 1996). These particles also reached houses (e.g. through open windows, cracks, and vents) in an urban environment and deposited inside resulting in the exposition of the habitants to <sup>137</sup>Cs, especially in areas that are not accessible for a regular cleaning like attics. Following the nuclear accidents, primary attention was drawn to agricultural areas and less attention was paid to urban environments. Accordingly, the goal of this study is to compare the <sup>137</sup>Cs activity in attic dust as undisturbed samples, and urban soils as disturbed environmental materials to determine the <sup>137</sup>Cs distribution in urban environment. </p><p>Attic dust (AD) samples were collected from 14 houses, which were built between 1900 and 1990 14 urban soil (US) samples were collected nearby the houses at a depth of 0-15 cm in Salgótarján, a former industrial city. To obtain a representative local undisturbed soil sample, a forest soil sample was collected from the upwind direction (NW) of the city. To check the <sup>137</sup>Cs content of the local industrial waste material, we also collected fly-ash slag sample from a waste dump.   AD and US samples were analyzed by a well-type HPGe and with an n-type coaxial HPGe detector in a low background iron chamber, respectively.</p><p>Cs-137 activity in the studied AD ranges from 5.51±0.9 to 165.9±3.6 Bq kg<sup>-1, </sup>with a mean value of 75.4±2.5 Bq kg<sup>-1 </sup>(decay corrected in 2016). In contrast, US samples show <sup>137</sup>Cs activity ranging between 2.3±0.4 and 13.6±0.6 Bq kg<sup>-1</sup>.  The brown forest soil sample has elevated <sup>137</sup>Cs activity concentration (18.5<strong>±</strong>0.6 Bq kg<sup>-1</sup>), compared to the urban soils. The fly-ash slags activity is below the detection limit (0.7±0.5 Bq kg<sup>-1</sup>).</p><p>The average <sup>137</sup>Cs activity in AD is ~15 times higher than that of US. This result clearly indicates that attic area provides a protected (hardly or unchanged) environment, therefore physical condition of the dust remains constant in time, and there is a small chance for chemical reaction. Forest soil proves that US were highly disturbed by anthropogenic activity. This is supported by fly-ash slag activity results.  Whereas, <sup>137</sup>Cs activity concentration of the AD samples shows significantly higher than that of the studied soils in Hungary. This confirms again US cannot show the historical atmospheric <sup>137</sup>Cs pollution such as attic dust. A statistically significant relationship (p=0.003, r<sup>2</sup>=0.05) were found between the AD and US samples. Therefore, it can be considered that attic dust remained undisturbed for decades and preserve past record of components of atmospheric pollution.</p><p> </p><p> </p>


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6514
Author(s):  
Grzegorz Ludwik Golewski ◽  
Bartosz Szostak

Siliceous fly ash (FA) is the main additive to currently produced concretes. The utilization of this industrial waste carries an evident pro-ecological factor. In addition, such actions have a positive effect on the structure and mechanical parameters of mature concrete. Unfortunately, the problem of using FA as a Portland cement replacement is that it significantly reduces the performance of concretes in the early stages of their curing. This limits the possibility of using this type of concrete, e.g., in prefabrication, where it is required to obtain high-strength composites after short periods of curing. In order to minimize these negative effects, this research was undertaken to increase the early strength of concretes with FA through the application of a specifically formulated chemical nano-admixture (NA) in the form of seeds of the C-S-H phase. The NA was used to accelerate the strength growth in concretes. Therefore, this paper presents results of tests of modified concretes both with the addition of FA and with innovative NA. The analyses were carried out based on the results of the macroscopic and microstructural tests in five time periods, i.e., after 4, 8, 12, 24 and 72 h. The results of tests carried out with the use of NA clearly indicate the possibility of using FA in a wide range of management areas in sustainable concrete prefabrication.


2013 ◽  
Vol 313-314 ◽  
pp. 169-173 ◽  
Author(s):  
A.M. Mustafa Al Bakri ◽  
H. Kamarudin ◽  
M. Bnhussain ◽  
J. Liyana ◽  
Che Mohd Ruzaidi Ghazali

This paper presents the development of a nano geopolymer for sustainable concrete using fly ash synthesized by high-energy ball milling. In this paper, we report on our investigation of the effects of grinding on the binder properties and the optimization of the mix design for nano geopolymer paste. The research methodology consisted of synthesizing fly ash by using a high-energy ball mill to create nanosized particles and determining the formulation and mix proportions required to produce a nano geopolymer paste with the addition of an alkaline activator. The ratio of fly ash to alkaline activator and sodium silicate to sodium hydroxide were constant for the entire experiment which is 2.5. Ball milling was conducted for the total duration of six hours, during which particle size was reduced from 10 μm to 60 nm. The nano geopolymer were cured at temperature 70°C and then tested on 1st day and 7th day for compressive strength. Scanning electron microscopy (SEM) was used to characterize the shape, texture, and size of the milled fly ash.


2020 ◽  
Vol 251 ◽  
pp. 118980 ◽  
Author(s):  
Babar Ali ◽  
Liaqat Ali Qureshi ◽  
Syed Haroon Ali Shah ◽  
Safi Ur Rehman ◽  
Iqrar Hussain ◽  
...  

2020 ◽  
Vol 33 ◽  
pp. 1149-1157
Author(s):  
P.S. Joanna ◽  
T.S. Parvati ◽  
Jessy Rooby ◽  
R. Preetha

Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 2904 ◽  
Author(s):  
Filip Chyliński ◽  
Krzysztof Kuczyński

Sustainable development leads to the production of building materials that are safer for the environment. One of the ways to achieve sustainability in materials is the addition of industrial wastes and by-products, especially to concrete. However, the addition of waste to concrete often decreases its durability and the scope of aggression of the environment in which the concrete is used has to be reduced. Making sustainable concrete, which is also durable in more aggressive environments, is rather difficult. This article presents the results of tests performed on concrete containing ilmenite mud waste from the production of titanium dioxide, which was exposed to frost aggression with and without de-icing salts. The results have shown that a sustainable and frost resistant concrete can be made. After 200 freeze–thaw cycles, the compressive strength of the tested concretes decreased by less than 4%. Concretes were highly resistant for scaling and after 112 freeze–thaw cycles in water with de-icing salt, the scaled mass was less than 0.02 kg/m2. The air void distribution has also been analyzed. The results suited the requirements for frost resistance concrete and were similar to those obtained for a reference concrete with fly ash. The examination of the microstructure using scanning electron microscopy (SEM) has not shown any potential risks that might affect the durability of concrete. Particles of waste were thoroughly combined in the binder and some of its constituents seem to be an active part of the cement matrix. Long-term tests of shrinkage (360 days) have not shown any excessive values that would differ from the reference concrete with fly ash. The presented results have shown that sustainable concrete containing ilmenite mud waste from the production of titanium dioxide might also be resistant to frost aggression.


Sign in / Sign up

Export Citation Format

Share Document