hydromechanical behaviour
Recently Published Documents


TOTAL DOCUMENTS

62
(FIVE YEARS 12)

H-INDEX

16
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Angela Di Perna ◽  
Sabatino Cuomo ◽  
Mario Martinelli

Abstract Full understanding the interaction mechanisms between flow-like landslides and the impacted protection structures is an open issue. In fact, while researchers have used several approaches, from experimental to numerical, it is true that the adequate assessment of the hydromechanical behaviour of the landslide body requires both a multiphase and large deformation approach.This paper firstly proposes a conceptual framework for a specific type of protection structure, namely a rigid barrier fixed to the base ground. Two different approaches are proposed: i) an advanced hydro-mechanical numerical model based on Material Point Method is tested in simulating the whole complex landslide-structure-interaction mechanism(s), ii) a more simplified empirical model is casted to estimate the impact force and the time evolution of kinetic energy. The calibration and validation of the empirical formulation are pursued, respectively, based on the MPM numerical results, and referring to a large dataset of field evidence for the peak impact pressure. Finally, the performance of the newly proposed empirical method is compared to the methods available in the literature and its advantages are outlined.


2022 ◽  
Vol 216 ◽  
pp. 106353
Author(s):  
Benjamin Darde ◽  
Anh Minh Tang ◽  
Jean-Michel Pereira ◽  
Patrick Dangla ◽  
Jean-Noël Roux ◽  
...  

Author(s):  
Agostino Walter Bruno ◽  
Domenico Gallipoli ◽  
Joao Mendes

This paper presents the results from a campaign of unsaturated and saturated isotropic tests performed on two compacted silts of different coarseness, namely a clayey silt and a sandy silt, inside triaxial cells. Some tests involved an increase/decrease of mean net stress at constant suction or an increase/decrease of suction at constant mean net stress. Other tests involved an increase of mean net stress at constant water content with measurement of suction. During all tests, the void ratio and degree of saturation were measured to investigate the mechanical and retention behaviour of the soil. The experimental results were then simulated by the bounding surface hydromechanical model of Bruno and Gallipoli (2019), which was originally formulated to describe the behaviour of clays and clayey silts. Model parameters were calibrated against unsaturated tests including isotropic loading stages at constant water content with measurement of varying suction. Loading at constant water content is relatively fast and allows the simultaneous exploration of large ranges of mean net stress and suction, thus reducing the need of multiple experiments at distinct suction levels. Predicted data match well the observed behaviour of both soils, including the occurrence of progressive yielding and hysteresis, which extends the validation of this hydromechanical model to coarser soils. Specific features of the unsaturated soil behaviour, such as wetting-induced collapse, are also well reproduced.


2020 ◽  
Vol 57 (11) ◽  
pp. 1695-1703 ◽  
Author(s):  
C.W.W. Ng ◽  
D.B. Akinniyi ◽  
C. Zhou

Lateritic clay is widely distributed in tropical areas and used extensively for foundation materials. Compared to other soils, it is rich in iron and aluminum oxides (sesquioxides), which enhance the formation of soil aggregates. The principal objective of this study is to investigate the hydromechanical behaviour of a lateritic sandy lean clay. All specimens were compacted at the same condition and then wetted to a predefined suction (0, 50, 150 kPa). Suction-controlled isotropic compression and shear tests were carried out. Moreover, soil microstructures at various suctions were determined using the mercury intrusion porosimetry (MIP) and scanning electron microscope (SEM) techniques. The compressibility of the lateritic clay decreased by about 50% as suction decreased from 150 to 0 kPa. This is mainly because as the suction decreased to 0 kPa, the sizes of interaggregate pores decreased, as revealed by MIP data. During shearing, the critical state friction angle appeared to be independent of suction. The contribution of suction to the apparent cohesion is unexpectedly low, likely because the interaggregate pores have a low degree of saturation and the contribution of the water meniscus on shear strength is very low.


2020 ◽  
Vol 57 (7) ◽  
pp. 1025-1043 ◽  
Author(s):  
Guido Musso ◽  
Arash Azizi ◽  
Cristina Jommi

The paper focuses on the hydromechanical behaviour of an unsaturated compacted clayey silt, accounting for fabric changes induced by drying–wetting cycles occurring at low stress levels. The response along isotropic compression and triaxial compression (shear) at constant water content was investigated by laboratory tests on both as-compacted and dried–wetted samples. Compaction induces a microstructural porosity pertinent to clay peds and a macrostructural porosity external to the peds. Drying–wetting cycles decrease the microporosity and increase the macroporosity, which reduces the water retention capacity, increases the compressibility, and promotes higher peak strengths with more brittle behaviour during triaxial compression. A coupled double-porosity elastic–plastic model was formulated to simulate the experimental results. A nonassociated flow rule was defined for the macrostructure, modifying a stress–dilatancy relationship for saturated granular soils to account for the increase in dilatancy with suction observed in the experiments. The average skeleton stress and suction were adopted as stress variables. As correctly predicted by the model, the shear strength at critical state is not significantly influenced by the degree of saturation or by the hydraulic history. On the contrary, the higher peak strength, brittleness, and dilatancy of the dried–wetted samples are mostly explained by their reduced water-retention capacity.


2020 ◽  
Vol 195 ◽  
pp. 02006
Author(s):  
Benjamin Darde ◽  
Anh Minh Tang ◽  
Jean-Michel Pereira ◽  
Patrick Dangla ◽  
Jean-Noël Roux ◽  
...  

Bentonite pellet-powder mixtures are candidate sealing materials in radioactive waste disposal concepts. The mixture is installed in galleries in dry state as a granular material. The material is progressively hydrated by the pore water of the host rock and becomes homogeneous. Before homogenisation, the granular structure controls the material behaviour. In the present work, a modelling approach able to address particular features of pellet-powder mixtures is introduced. Two domains are considered: i) granular, and ii) homogeneous. The material behaviour before homogenisation is studied through Discrete Element Method (DEM) simulations. Constitutive laws for the granular state are proposed from DEM results. The behaviour of the homogenised material is described by a modified Barcelona Basic Model (BBM). Transition from granular to homogeneous states depends on suction and relative volume fractions of pellets and powder. Swelling pressure tests performed in the laboratory are satisfactorily simulated using this approach.


2020 ◽  
Vol 195 ◽  
pp. 03042
Author(s):  
Zheng Zhou ◽  
Anthony K Leung

Artificially hydrophobised soil has been recently considered as an alternative engineering material that may be used to reduce water (or rainfall) infiltration and hence to enhance the geotechnical performance and stability of earthen structures such as slope and landfill covers. Thorough research has been conducted to study the hydrological behaviour and properties of hydrophobised soil in the last four decades. Mechanical properties of this kind of material has received some attention only since 2011, focusing on how hydrophobisation may affect the shearing behaviour and shear strength parameters including friction angle. Knowledge on the effects of hydrophobisation on other hydromechanical properties of soil that are relevant to geotechnical engineering applications is lacking. This paper therefore aims to conduct a comprehensive review and carry out some reinterpretation of selected literature with references to existing theories or frameworks of soil mechanics. Attempts are made to generalise and highlight not only the shearing behaviour, but also dilatancy, compressibility and stiffness of hydrophobised soil. Research gaps that may be worth exploring are given after the review.


2020 ◽  
Vol 195 ◽  
pp. 06008
Author(s):  
Olivier Cuisinier ◽  
Farimah Masrouri

The positive effects of lime or cement treatment could be altered by weathering in the very long term. In this context, the main purpose of this study is to examine the impact of wetting/drying cycles on the strength and the hydraulic conductivity of a compacted soil treated with lime and cement. Compacted specimens were cured for 90 days before being exposed up to twelve wetting and drying cycles. A special concern of the study was the experimental method to impose the wetting and drying cycles. Two protocols were employed: one relied on relative humidity control to dry the samples, while the other was based on oven drying. The impact of the cycles was quantified by comparing the performance of the samples exposed to the cycles to the performance of the unsolicited samples. The results showed that the cycles induced a major alteration of the strength of the samples, with both methods. This degradation is associated to a significant increase of the hydraulic conductivity of the samples with the number of cycles.


2019 ◽  
Vol 56 (11) ◽  
pp. 1609-1621 ◽  
Author(s):  
Shengshen Wu ◽  
Annan Zhou ◽  
Jie Li ◽  
Jayantha Kodikara ◽  
Wen-Chieh Cheng

Hydromechanical behaviour of an unsaturated silt with various suctions and different overconsolidated ratios (OCRs) was investigated through a series of undrained triaxial tests (constant water contents, CW). All the samples were prepared from the slurry state. Different OCRs (= 1, 2, 4, and 8 in net stress) were achieved by unloading the samples to 400, 200, 100, and 50 kPa from an initial confining net pressure of 400 kPa. Then the samples were dried to various suctions (0, 100, 200, 300, and 400 kPa). Unsaturated samples with different OCRs were then sheared at CW conditions following the conventional triaxial compression (CTC) paths. Full hydromechanical responses including the changes in deviator stress, stress ratio, volumetric strain, suction, and degree of saturation with axial strain were monitored and are presented in this paper. Some key findings include (i) the critical state for unsaturated soils with different OCRs can be well defined by Bishop’s effective stress; (ii) the peak strength in Bishop’s effective stress increases with increase of OCR, but decreases with increase of suction in the undrained condition; and (iii) the volume change of unsaturated soils in undrained conditions is related to OCRs and the volume of pore air.


Sign in / Sign up

Export Citation Format

Share Document