Urban Commuter Traffic Carbon Emission Model Based on Life Cycle

Author(s):  
Jun Zeng ◽  
Zhenjun Zhu ◽  
Jiaqi Meng
2015 ◽  
Vol 13 (4) ◽  
pp. 320-323
Author(s):  
Xiang Yu ◽  
Peng Gao ◽  
Yirong Liu ◽  
Meng Lei ◽  
Peng Zhang

2021 ◽  
Vol 897 (1) ◽  
pp. 012021
Author(s):  
Bin Bian ◽  
Zhihuan Du ◽  
Kui Zhou ◽  
Tao Huang ◽  
Fengbo Lv

Abstract China commits its goal of peak carbon dioxide emissions before 2030 and achieving carbon neutrality before 2060. The integrated energy system (IES) is one of the critical approaches to achieving the commitments. While the prevailing evaluation method for calculating the carbon emissions of IES neglected parts of factors influence, the result could not reflect the carbon emissions comprehensively. Considering the insufficiency above, in this paper, the evaluation method of carbon emission based on the whole life cycle of IES is proposed. First, based on the IES energy hub model, a typical park’s carbon emission model has been established. Then, the carbon emission coefficients of energy and equipment in production, transportation and operation are analysed, respectively. Hence, a low-carbon operation optimisation model of the IES is proposed. Later, with the lowest annual carbon emission of the integrated energy system as the optimisation target, the IES’s optimal carbon emission allocation and operation plan are proposed, based on the balance between energy supply and demand in the process of energy and equipment use and operation. As a result, the carbon emission of the IES of the park reduces effectively.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1810
Author(s):  
Kaitong Xu ◽  
Haibo Kang ◽  
Wei Wang ◽  
Ping Jiang ◽  
Na Li

At present, the issue of carbon emissions from buildings has become a hot topic, and carbon emission reduction is also becoming a political and economic contest for countries. As a result, the government and researchers have gradually begun to attach great importance to the industrialization of low-carbon and energy-saving buildings. The rise of prefabricated buildings has promoted a major transformation of the construction methods in the construction industry, which is conducive to reducing the consumption of resources and energy, and of great significance in promoting the low-carbon emission reduction of industrial buildings. This article mainly studies the calculation model for carbon emissions of the three-stage life cycle of component production, logistics transportation, and on-site installation in the whole construction process of composite beams for prefabricated buildings. The construction of CG-2 composite beams in Fujian province, China, was taken as the example. Based on the life cycle assessment method, carbon emissions from the actual construction process of composite beams were evaluated, and that generated by the composite beam components during the transportation stage by using diesel, gasoline, and electric energy consumption methods were compared in detail. The results show that (1) the carbon emissions generated by composite beams during the production stage were relatively high, accounting for 80.8% of the total carbon emissions, while during the transport stage and installation stage, they only accounted for 7.6% and 11.6%, respectively; and (2) during the transportation stage with three different energy-consuming trucks, the carbon emissions from diesel fuel trucks were higher, reaching 186.05 kg, followed by gasoline trucks, which generated about 115.68 kg; electric trucks produced the lowest, only 12.24 kg.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3287
Author(s):  
Alireza Tabrizikahou ◽  
Piotr Nowotarski

For decades, among other industries, the construction sector has accounted for high energy consumption and emissions. As the energy crisis and climate change have become a growing concern, mitigating energy usage is a significant issue. The operational and end of life phases are all included in the building life cycle stages. Although the operation stage accounts for more energy consumption with higher carbon emissions, the embodied stage occurs in a time-intensive manner. In this paper, an attempt has been made to review the existing methods, aiming to lower the consumption of energy and carbon emission in the construction buildings through optimizing the construction processes, especially with the lean construction approach. First, the energy consumption and emissions for primary construction materials and processes are introduced. It is followed by a review of the structural optimization and lean techniques that seek to improve the construction processes. Then, the influence of these methods on the reduction of energy consumption is discussed. Based on these methods, a general algorithm is proposed with the purpose of improving the construction processes’ performance. It includes structural optimization and lean and life cycle assessments, which are expected to influence the possible reduction of energy consumption and carbon emissions during the execution of construction works.


Author(s):  
Kazunori Shimazaki ◽  
Eiji Miyazaki ◽  
Fumitaka Urayama ◽  
Yugo Kimoto

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Saman Esmaeilian ◽  
Dariush Mohamadi ◽  
Majid Esmaelian ◽  
Mostafa Ebrahimpour

Purpose This paper aims to minimize the total carbon emissions and costs and also maximize the total social benefits. Design/methodology/approach The present study develops a mathematical model for a closed-loop supply chain network of perishable products so that considers the vital aspects of sustainability across the life cycle of the supply chain network. To evaluate carbon emissions, two different regulating policies are studied. Findings According to the obtained results, increasing the lifetime of the perishable products improves the incorporated objective function (IOF) in both the carbon cap-and-trade model and the model with a strict cap on carbon emission while the solving time increases in both models. Moreover, the computational efficiency of the carbon cap-and-trade model is higher than that of the model with a strict cap, but its value of the IOF is worse. Results indicate that efficient policies for carbon management will support planners to achieve sustainability in a cost-effectively manner. Originality/value This research proposes a mathematical model for the sustainable closed-loop supply chain of perishable products that applies the significant aspects of sustainability across the life cycle of the supply chain network. Regional economic value, regional development, unemployment rate and the number of job opportunities created in the regions are considered as the social dimension.


2009 ◽  
Vol 6 (12) ◽  
pp. 3035-3051 ◽  
Author(s):  
J. van Huissteden ◽  
A. M. R. Petrescu ◽  
D. M. D. Hendriks ◽  
K. T. Rebel

Abstract. Modelling of wetland CH4 fluxes using wetland soil emission models is used to determine the size of this natural source of CH4 emission on local to global scale. Most process models of CH4 formation and soil-atmosphere CH4 transport processes operate on a plot scale. For large scale emission modelling (regional to global scale) upscaling of this type of model requires thorough analysis of the sensitivity of these models to parameter uncertainty. We applied the GLUE (Generalized Likelihood Uncertainty Analysis) methodology to a well-known CH4 emission model, the Walter-Heimann model, as implemented in the PEATLAND-VU model. The model is tested using data from two temperate wetland sites and one arctic site. The tests include experiments with different objective functions, which quantify the fit of the model results to the data. The results indicate that the model 1) in most cases is capable of estimating CH4 fluxes better than an estimate based on the data avarage, but does not clearly outcompete a regression model based on local data; 2) is capable of reproducing larger scale (seasonal) temporal variability in the data, but not the small-scale (daily) temporal variability; 3) is not strongly sensitive to soil parameters, 4) is sensitive to parameters determining CH4 transport and oxidation in vegetation, and the temperature sensitivity of the microbial population. The GLUE method also allowed testing of several smaller modifications of the original model. We conclude that upscaling of this plot-based wetland CH4 emission model is feasible, but considerable improvements of wetland CH4 modelling will result from improvement of wetland vegetation data.


Sign in / Sign up

Export Citation Format

Share Document