Rock Slopes on Top of Sand: Modelling of Open Filters under Wave Loading

Author(s):  
Marcel R. A. van Gent ◽  
Maria P. Herrera ◽  
Jorge Molines ◽  
Niels G. Jacobsen
Keyword(s):  
2002 ◽  
Vol 82 (12) ◽  
pp. 2419-2440
Author(s):  
S. Golyandin ◽  
S. Kustov ◽  
S. Nikanorov ◽  
K. Sapozhnikov ◽  
A. Sinani ◽  
...  

2019 ◽  
Author(s):  
Rachel Capps ◽  
◽  
Scott Brame ◽  
Audrey Crafton

2021 ◽  
Vol 11 (12) ◽  
pp. 5447
Author(s):  
Xiaona Zhang ◽  
Gang Mei ◽  
Ning Xi ◽  
Ziyang Liu ◽  
Ruoshen Lin

The discrete element method (DEM) can be effectively used in investigations of the deformations and failures of jointed rock slopes. However, when to appropriately terminate the DEM iterative process is not clear. Recently, a displacement-based discrete element modeling method for jointed rock slopes was proposed to determine when the DEM iterative process is terminated, and it considers displacements that come from rock blocks located near the potential sliding surface that needs to be determined before the DEM modeling. In this paper, an energy-based discrete element modeling method combined with time-series analysis is proposed to investigate the deformations and failures of jointed rock slopes. The proposed method defines an energy-based criterion to determine when to terminate the DEM iterative process in analyzing the deformations and failures of jointed rock slopes. The novelty of the proposed energy-based method is that, it is more applicable than the displacement-based method because it does not need to determine the position of the potential sliding surface before DEM modeling. The proposed energy-based method is a generalized form of the displacement-based discrete element modeling method, and the proposed method considers not only the displacement of each block but also the weight of each block. Moreover, the computational cost of the proposed method is approximately the same as that of the displacement-based discrete element modeling method. To validate that the proposed energy-based method is effective, the proposed method is used to analyze a simple jointed rock slope; the result is compared to that achieved by using the displacement-based method, and the comparative results are basically consistent. The proposed energy-based method can be commonly used to analyze the deformations and failures of general rock slopes where it is difficult to determine the obvious potential sliding surface.


2021 ◽  
Vol 130 ◽  
pp. 79-93
Author(s):  
Yun Zheng ◽  
Runqing Wang ◽  
Congxin Chen ◽  
Chaoyi Sun ◽  
Zhanghao Ren ◽  
...  

2021 ◽  
Vol 9 (1) ◽  
pp. 55
Author(s):  
Darshana T. Dassanayake ◽  
Alessandro Antonini ◽  
Athanasios Pappas ◽  
Alison Raby ◽  
James Mark William Brownjohn ◽  
...  

The survivability analysis of offshore rock lighthouses requires several assumptions of the pressure distribution due to the breaking wave loading (Raby et al. (2019), Antonini et al. (2019). Due to the peculiar bathymetries and topographies of rock pinnacles, there is no dedicated formula to properly quantify the loads induced by the breaking waves on offshore rock lighthouses. Wienke’s formula (Wienke and Oumeraci (2005) was used in this study to estimate the loads, even though it was not derived for breaking waves on offshore rock lighthouses, but rather for the breaking wave loading on offshore monopiles. However, a thorough sensitivity analysis of the effects of the assumed pressure distribution has never been performed. In this paper, by means of the Wolf Rock lighthouse distinct element model, we quantified the influence of the pressure distributions on the dynamic response of the lighthouse structure. Different pressure distributions were tested, while keeping the initial wave impact area and pressure integrated force unchanged, in order to quantify the effect of different pressure distribution patterns. The pressure distributions considered in this paper showed subtle differences in the overall dynamic structure responses; however, pressure distribution #3, based on published experimental data such as Tanimoto et al. (1986) and Zhou et al. (1991) gave the largest displacements. This scenario has a triangular pressure distribution with a peak at the centroid of the impact area, which then linearly decreases to zero at the top and bottom boundaries of the impact area. The azimuthal horizontal distribution was adopted from Wienke and Oumeraci’s work (2005). The main findings of this study will be of interest not only for the assessment of rock lighthouses but also for all the cylindrical structures built on rock pinnacles or rocky coastlines (with steep foreshore slopes) and exposed to harsh breaking wave loading.


Sign in / Sign up

Export Citation Format

Share Document