The Dynamic Analysis of a Freight Train Rolling Bearing with Outer Ring Fault

ICRT 2017 ◽  
2018 ◽  
Author(s):  
Wenchang Zhang ◽  
Yongqiang Liu ◽  
Yingying Liao ◽  
Pengfei Liu
Author(s):  
Chang Liu ◽  
Gang Cheng ◽  
Xihui Chen ◽  
Yong Li ◽  
Wei Gu

Rolling bearing local fault vibration mechanism research is the theoretical basis of advanced bearing fault diagnosis and size measurement technology. In this paper, the additional displacement and impact force excitation of inner and outer ring local faults under low speed and heavy load condition are analysed, and rolling bearing local fault vibration model is established. The simulated dual impulse characteristics have higher accuracy under low speed and heavy load condition compared with other traditional local fault models. The outer and inner ring fault simulated dual impulse interval errors are 6.7% and 1.1%, respectively. Then the local fault vibration mechanism is analysed, and the influence of heavy load condition on dual impulse characteristic is not negligible. Finally, a size measurement method of bearing local fault based on vibration model is proposed. Two sizes of outer ring fault bearing are tested in four different working conditions, and the average measurement error is 3.78%. The results show that the proposed method can overcome the influence of different working conditions and accurately measure different local fault sizes.


Author(s):  
Zheng Zhang ◽  
Jianrong Zheng

Taking the crankshaft-rolling bearing system in a certain type of compressor as the research objective, dynamic analysis software is used to conduct detailed dynamic analysis and optimal design under the rated power of the compressor. Using Hertz mathematical formula and the analysis method of the superstatic orientation problem, the relationship expression between the bearing force and deformation of the rolling bearing is solved, and the dynamic analysis model of the elastic crankshaft-rolling bearing system is constructed in the simulation software ADAMS. The weighted average amplitude of the center of the neck between the main bearings is used as the target, and the center line of the compressor cylinder is selected as the design variable. Finally, an example analysis shows that by introducing the fuzzy logic neural network algorithm into the compressor crankshaft-rolling bearing system design, the optimal solution between the design variables and the objective function can be obtained, which is of great significance to the subsequent compressor dynamic design.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Rui Yuan ◽  
Yong Lv ◽  
Gangbing Song

Rolling bearings are vital components in rotary machinery, and their operating condition affects the entire mechanical systems. As one of the most important denoising methods for nonlinear systems, local projection (LP) denoising method can be used to reduce noise effectively. Afterwards, high-order polynomials are utilized to estimate the centroid of the neighborhood to better preserve complete geometry of attractors; thus, high-order local projection (HLP) can improve noise reduction performance. This paper proposed an adaptive high-order local projection (AHLP) denoising method in the field of fault diagnosis of rolling bearings to deal with different kinds of vibration signals of faulty rolling bearings. Optimal orders can be selected corresponding to vibration signals of outer ring fault (ORF) and inner ring fault (IRF) rolling bearings, because they have different nonlinear geometric structures. The vibration signal model of faulty rolling bearing is adopted in numerical simulations, and the characteristic frequencies of simulated signals can be well extracted by the proposed method. Furthermore, two kinds of experimental data have been processed in application researches, and fault frequencies of ORF and IRF rolling bearings can be both clearly extracted by the proposed method. The theoretical derivation, numerical simulations, and application research can indicate that the proposed novel approach is promising in the field of fault diagnosis of rolling bearing.


2020 ◽  
pp. 26-34
Author(s):  
V. V. Nosov ◽  
I. A. Pavlenko ◽  
A. P. Artyushchenko ◽  
E. V. Grigoriev

Traditionally, the problem of monitoring the condition of rolling bearings can be solved based on registration of control signals that occur when the bearing performs a kinematic function due to contact of surface damage which is accumulated and caused by the processes of friction, impact, heat generation, contact electrical interaction, generation of elastic vibrations from them, etc. Relative to the bearing function of bearings, the diagnostic value of such signals is quite low, since they depend on many factors that are not related to resource-determining processes and play a destabilizing role in establishing the connection between control parameters and condition. The solution of the problem must be carried out based on a systematic approach linking the control of the object with the main criterion of its performance. Since the cause of bearing failures is fatigue processes occurring in the material of their elements, the most promising methods are those based on the registration of signals associated with the restructuring of the structure and the accumulation of damage of the material, and in particular, the method of acoustic emission (AE) based on recording the phenomenon of waves of elastic radiation at loading. The development of the acoustic emission method for monitoring the state of rolling bearings is based on a multi-level model of the time dependence of AE parameters, and the control is based on the assessment of the intensity parameters of the resource-determining stage of uniform elastic fracture of representative structural elements of the material of the test object. AE informative signals are selected, and diagnostic parameters are determined at the interlevel transition from macro- to micro- and nano-level. The idea of the transitions is to select representative informative parameters and to trace the connection between them through AE strength indicators that can highlight a useful signal in conditions of high instability and heterogeneity of the accompanying processes. The experimental stup and the results of experimental studies of AE of rolling bearings with an artificially created defect on the surface of the outer ring are described, the results of control are compared with the results of the analysis of the stress-strain state around the created defect, the informative value of the concentration and kinetic index and the possibility of evaluating the resource based on it are shown.


Author(s):  
Hui Li ◽  
Chen Li ◽  
Yuan Li ◽  
Shemiao Qi ◽  
Yi Liu ◽  
...  

Abstract Aiming at the problem of wear on the cage-pocket during the operation of high speed rolling bearing, a dynamic model of high-speed ball bearing was established considering the wear loss of the ball-pocket, and the simulation was carried out to research on the interaction among the balls, the inner ring, the outer ring and the cage with different wear loss of the ball-pocket. The effect of the pocket wear on the trajectory of the cage’s mass center and the skidding ratio of cage was obtained. It was found out that the mass-center trajectory of the cage presents two vibration modes with different amplitudes which emerges alternatively. Moreover, the wear loss of the ball-pocket has little effect on the average skidding ratio of the cage, however, the fluctuation amplitude would become larger as the wear increase. This study can provide theoretical guidance for the design of bearing cage pocket size.


2011 ◽  
Vol 308-310 ◽  
pp. 1792-1795
Author(s):  
Li Ming Lu

In the paper a new kind of rolling-sliding blend bearing has been studied. In order to comparing the new bearings and rolling bearings in the carrying capacity and service life, the stresses on the inner ring, the outer ring and the roller of rolling bearing and rolling-sliding blend bearing are analyzed by establishing the finite element model and solving it with finite element analysis software. The results show that the width of the stress concentration area on the outer ring and the roller and the inner ring of rolling-sliding blend bearing is 25 per cent narrower than that of rolling bearing and the depth of the largest stress on the outer ring and the roller and the inner ring of rolling-sliding blend bearing is 25 per cent shallower than that of rolling bearing and the largest stress on the middle and the end of the outer ring and the roller and the inner ring of rolling-sliding blend bearing is much smaller than that of rolling bearing. In the same case rolling-sliding blend bearings have greater carrying capacity and longer service life than rolling bearings.


2012 ◽  
Vol 134 (2) ◽  
Author(s):  
Takafumi Nagatomo ◽  
Ken Takahashi ◽  
Yoshiaki Okamura ◽  
Takehiko Kigawa ◽  
Shoji Noguchi

An external load applied to a radial rolling bearing is distributed among the rolling elements. In many applications, the bearing internal load distribution may be altered by the elastic deformations of the bearing rings. This alteration can have an effect on bearing life. The objective of this study is to investigate the effect of load distribution on bearing life, both theoretically and experimentally, using several housing models which provide different contact conditions between the housing bore and the outer ring. This paper first presents a newly developed method of determining dynamic load distributions with an optical fiber strain sensor. The measurements of the load distribution for the housing models by using this method have shown that the contact condition between the housing bore and the outer ring affects the load distribution, and the effect of the load distribution on the bearing life has been confirmed by the theoretical calculation of the bearing life. Furthermore, endurance tests using dented bearings were performed to validate the effect of load distribution on bearing life. The results of the tests have substantiated that the bearing life is substantially affected by the load distribution; moreover, it has been shown that there is a linear relationship between the calculated lives and the experimental ones.


Sign in / Sign up

Export Citation Format

Share Document